Some Software Design Issues
for Realizing Internet-Scale Ubiquitous Computing

Hiro Ishikawa, Tatsuo Nakajima
Department of Information and Computer Science
Waseda University
3-4-1 Okubo Shinjuku Tokyo 169-8555 JAPAN

ishikaw@dcl.info.waseda.ac.jp

Abstract

In the near future, we will carry a variety of mobile and
wearable appliances that are connected to the Internet.
We require a lot of middleware components for integrat-
ing these appliances to make it easy to develop advanced
future applications.

However, building such components is very hard, and
needs to consider a lot of issues. In this paper, we describe
several software design issues to develop complex middle-
ware components for realizing Internet-scale ubiquitous
computing environments that enable various appliances
to be integrated on the Internet.

This paper first presents some design issues for build-
ing Internet-scale ubiquitous computing environments.
Then, our plan to develop a new framework for build-

ing software for Internet-scale ubiquitous computing is
described.

1 Introduction

Our daily life will be dramatically changed since com-
puters will be embedded in various objects surrounding
us such as shoes and pens. The objects will become in-
telligent and augment our daily life by monitoring our
behaviors[5]. Also, traditional appliances such as TV,
microwaves, and refrigerators will become more intelli-
gent and communicate each other. Also, we carry vari-
ous mobile wearable appliances that are connected to the
Internet.

Recently, we are carrying a lot of personal appliances
with us such as cellular phones, PDAs and MP3 players.
In the near future, we will have a lot of home appliances in
our houses. Also, various appliances in cars, trains, and
public spaces will be appeared. These appliances will be
connected to the Internet soon, and it is possible to share
information from various appliances.

Ubiquitous computing will add several additional func-
tionalities to these appliances. For example, ubiquitous
computing applications need to change their behaviors
according to their current situations such as location in-
formation, a user’s emotion, and preference[l, 18]. Also,
ubiquitous computing applications provide new interac-
tion techniques[19, 7]. A variety of sensors monitor our
behaviors, and a model that represents our real world in
computers provides better context-awareness[3, 6].

In Internet-scale ubiquitous computing environments,
the most important issue that needs to be taken into
account is extreme heterogeneity. For example, future
appliances will run on various types of processors, and
they will have a variety of I/O devices. Also, there are
connected by various types of networks and protocols.
Therefore, it is necessary to take into account extreme
heterogeneity when designing software for Internet-scale
ubiquitous computing environments.

In these environments, one of the most important is-
sues is to develop software at low cost. Thus, it is de-
sirable to develop software that is portable for various
platforms. Also, it is important to reuse existing soft-
ware on various appliances. FEspecially, it is very ex-
pensive to develop platform software such as operating
systems and middleware components, then our aim is
to increase the portability of platform software. Also,
COTS(Commercial Off The Shelf) software components
such as Linux, Java, and CORBA should be used for
building various ubiquitous computing applications be-
cause these COTS software components enable us to use
a lot of existing software. For example, it is easy to find
various software components written in Java such as XML
parsers and CORBA runtimes. Also, there are a lot of In-
ternet middleware components on Linux. These standard
platform software components should be used in Internet-
scale ubiquitous computing environments because using
the standard interface makes an educational cost cheap, it
is easy to develop a huge amount of software contributed
from various communities, and to reuse various commer-

cial services and appliances.

This paper first presents some design issues for build-
ing Internet-scale ubiquitous computing. Then, our plan
to develop a new framework for building software for
Internet-scale ubiquitous computing is described.

2 Requirements for Realizing Internet-
Scale Ubiquitous Computing

There are several requirements to realize Internet-scale
ubiquitous computing environments. The following re-
quirements are considered as architectural guidelines to
build the environments.

e Extremely Portable
¢ Uniform Behavior
e High Level Abstraction

e Survival Systems

The software for Internet-scale ubiquitous computing
environments should be extremely portable because the
environments are extremely heterogeneous, but we do
not expect to implement the software on every platform.
However, the software should be optimized by using the
characteristics of applications and platforms. For exam-
ple, the resource management of a middleware component
should be customized by using the requirements of appli-
cation programs.

The environments should allow a user to behave in a
uniform way when he moves to any spaces such as his/her
house, an airport, and an office. For example, a user
should control a television in the same way, in any places
such as his/her house or an airport. The uniform behavior
is very important to design the user interface for Internet-
scale ubiquitous computing.

Also, the system software for building Internet-scale
ubiquitous computing environments should provide high
level abstraction to make us to build application program
easily. The existence of high level models is very impor-
tant to build the application programs in a systematic
way since the lack of right abstraction makes the struc-
ture of the application programs ad-hoc.

Lastly, Internet-scale ubiquitous computing environ-
ments should survive against security attacks, system
crashes, and natural disaster since our daily life will heav-
ily rely on the environments. However, it is very difficult
that a usual user takes into account survivability issues
when implementing programs. Therefore, it is important
to develop a methodology to convert a program that does
not take into account survivability to survival software
automatically.

3 Software Design Issues

In this section, we describe two software design issues
to develop software for Internet-scale ubiquitous comput-
ing environments.

3.1 Transparent QOS Evolution

As describe in the previous section, we need to reuse a
variety of COTS software components to realize Internet-
scale ubiquitous computing environments. However,
these components must take into account various prop-
erties such as security, reliability, and predictability, but
usual programmers do not know what are real problems
to build survival software. Therefore, these properties
may be sometimes ignored in COTS software compo-
nents.

One of solutions is to add these properties into COTS
software components by post hoc. This means that a
COTS component is transparently translated to a com-
ponent that takes into account non functional properties
such as security, reliability and predictability. The solu-
tion may not provide these properties completely, but the
approach improves the quality of software drastically.

We are considering several approaches to realize the
goal. One approach is to use aspect-oriented program-
ming(AOP) techniques[2, 9, 17] to add these non func-
tional properties. When using AOP techniques, these
properties are defined as aspects, and the aspects are
merged into base COTS software components at runtime.
Therefore, this enables the COTS software components to
be adapted according to the characteristics of underlying
platforms. Also, there are several proposals to translate
Java binary codes that are used for adding these proper-
ties by post hoc[4].

However, we have to take into account several issues
to overcome the problems of current proposals. The first
issue is whether the QOS evolution can be achieved trans-
parently from a client program. If some assumptions of
the components are changed by adding these features,
the correctness of a client application may be violated.
We need to define rigorous API semantics for middleware
components, and need to check the assumptions when
adding the features. The second issue is that current AOP
techniques require to understand the internal structure of
the base COTS components to define aspects. However,
it is not easy to understand complex COTS software com-
ponents such as Linux, Java or CORBA. It is important
to export high level abstract structure of the components
to define various aspects.

3.2 Portability Issues

In Internet-scale ubiquitous computing environments,
we need to take into account a variety of platforms. If

we like to use COTS software components, it is impor-
tant to consider how to exploit advanced characteristics
provided by these underlying platforms. This requires to
add meta level interface[10] or QOS parameters to con-
trol the internal algorithms of the COTS software compo-
nents. However, it is not easy to export generic interface
to control underlying platforms because the generic in-
terface usually hides some low level characteristics of the
underlying platforms. We believe that it is desirable that
the interface should be customized to respective underly-
ing platforms for enabling us to use the full power of the
platforms. Our research aims are how to provide platform
specific meta interface or QOS parameters in a systematic
way, and how to build portable applications that access
the platform specific meta interface and QOS parameters.
We are considering to exploit AOP techniques and design
patterns to implement COTS software components.

When building software, we need to take into account
various tradeoffs among many metrics. For example, a
programmer needs to consider several metrics such as
timeliness, precision, accuracy, and consistency to build
mobile applications. It is impossible to satisfy all require-
ments so he/she must consider which requirements we
need to focus on, and the decision affects the program’s
structure dramatically.

For example, distributed applications should take into
account three metrics: consistency, availability, and net-
work partition. If we like to improve the application avail-
able, we need to select either consistency and network
partition. If we need to assume that network partition
occurs, it is impossible to ensure complete consistency.
Therefore, it is desirable to adopt optimistic protocols
to satisfy consistency. On the other hand, if we require
complete consistency, a system should not assume net-
work partition.

Building portable software requires to make explicit
its assumptions because the assumptions are necessary to
ensure the correctness of a program. Combining several
components that provide different assumptions to their
client programs allows us to use the combined compo-
nent as a component that supports a wide range of as-
sumptions. This requires to switch components when the
assumption is changed. However, the duration to change
the component may cause inconsistency, so it is impor-
tant that the change is executed atomically.

4 A New Framework
for Building Internet-Scale Ubiquitous
Computing Programs

In this section, we propose a new framework for build-
ing Internet-scale ubiquitous computing programs. The
goal of the framework is to exploit the characteristics of

underlying platforms without sacrificing the portability
of a program. In this section, we introduce our current
project towards the goal. In the framework, we assume
to adopt Java to write programs.

4.1 Why Real-Time?

Our current project focuses on how real-time aspects
can be added to existing non real-time programs. The
reasons to choose real-time issues is that we have a lot of
experiences with real-time computing[12, 13, 14, 15, 16].
Therefore, we will be able to apply our experiences to
our new project. Also, adding real-time aspects offers
several challenging problems. For example, real-time pro-
grams require careful structuring of programs for ensur-
ing their timing constraints, and various QOS issues can
be considered as useful examples for future computer sci-
ence researches. Finally, Internet-scale ubiquitous com-
puting environments require various resource constraints
that have been discussed in real-time research communi-
ties.

4.2 Real-Time Programming in Java

Recently, the Java programming language becomes
popular for building complex software. Internet-scale
ubiquitous computing environments need to build a lot
of complex software so Java seems to be a practical
choice to build Internet-scale ubiquitous environments
because Java provides automatic memory management,
object-orientation, and multithreading that are desirable
to build large-scale software.

We believe that providing real-time properties is a
very important issue for building Internet-scale ubiqui-
tous computing environment. For example, a variety of
devices in embedded systems such as multimedia devices
and mobile devices require to satisfy real-time proper-
ties. Multimedia programs such as MPEG video players
should change video frames without violating their timing
constraints.

There are two issues that should be taken into account
when we consider real-time constraints. The first issue
is that respective real-time applications require different
resource management strategies. The most important ex-
periences from our previous work is that there are many
approaches to satisfy resource constraint problems, and
respective solutions require to offer suitable API for re-
spective application programs. Thus, it is necessary to
provide different APIs for respective resource manage-
ment strategies. Moreover, it is important to export the
characteristics of underlying platforms directly because
abstracting them may hide the real power of the under-
lying platforms.

The second issue is that a middleware component such

as Java provides standard interface to application pro-
grams to ensure portability. For example, JVM hides
real-time properties provided by operating systems even
if the operating systems provide the real-time resource
management. Thus, it is important that middleware
should not hide the useful characteristics of the under-
lying platforms as shown in Figure 1.

Application Application w/RT

A * A T

: AP tAPl | RTIAP

PJVM { RT-JVM :

T hidden T T
API | RT API API ‘ RT AP

RT-0S RT-OS
(a) (b)

Figure 1:
with RT.

(a)Application without RT. (b)Application

Therefore, we believe that standardizing real-time API
for Java is not useful for Internet-scale ubiquitous com-
puting applications. Especially, it is not easy to stan-
dardize complex QOS specifications required for various
applications. Recently, RT'SJ[21] has been published to
add API for programming real-time applications in Java.
However, the specification contains traditional real-time
supports that are not enough to build Internet-scale ubig-
uitous computing applications.

We believe that it is important to provide real-time
API that is suitable for each application. The real-time
API is customized for each application to take into ac-
count the requirements for its resource management strat-
egy. However, as described in the previous section, it is
necessary not to degrade its portability.

4.3 Design Issues

Adding real-time properties to existing non real-time
programs require program translation. This section
presents the following three approaches to realize the
transparent modification of existing programs.

¢ Recompiling after Source Code Modification.
e Bytecode Translation.

¢ Just-in-time Compilation.

A traditional way to modify existing programs is to
translate source codes, and recompile them before their
execution. Additional codes are merged to existing pro-
grams at the source code level. The approach has the
following two problems. The first problem is requiring
to obtain source codes to add new features. Usually, it
may not be access source codes of commercial programs.
The second problem is that recompiling large software
takes very long time. Therefore, the overhead to modify
programs may cause a serious problem.

Bytecode translation is able to modify programs with-
out obtaining source codes. Therefore, program transla-
tion does not need recompilation.

For example, Java bytecode translators modify byte-
codes when loading class files into Java virtual machines.
There are many techniques to modify bytecodes, but it
is important to provide high level abstraction to modify
the bytecodes for making it easy to add non functional
properties.

Lastly, JIT, Just-in-time compilation, is similar to the
bytecode translation. The difference between these two
approaches is that the approach to adopt JIT does not
require to modify existing Java virtual machines because
a JIT compiler generates a machine code that satisfies
real-time requirements automatically, and the code is di-
rectly executing on a processor without the help of virtual
machines.

We believe that the byte code translation is appro-
priate for building Internet-scale ubiquitous computing
applications because source codes may not be obtained
usually, and JIT cannot be used for resource constrained
small devices.

4.4 Qur Approach

In this section, we describe our approach to build
Internet-scale ubiquitous computing applications. To
build extremely portable applications, we first write a
program in a very generic way. Then, additional proper-
ties such as real-time aspects will be added at run-time
by using Javassist[22] that is a bytecode translator pro-
viding high level reflection interface. Figure 2 shows the
overview architecture of our approach.

The approach has the following characteristics.

e Separating a portion of timing constraint manage-
ment as an aspect.

e The aspect may invoke a special API for achieving
special requirements on respective platforms. There-
fore, the aspect may be rewritten for respective plat-
forms.

o The aspect is merged at run-time by Javassist.

Application

Javassist

hlllllllllllll.
h 4
Application Application
for A for B
JVM A JVM B

Figure 2: Our Prototype

The advantage of our framework allows us to adopt ad-
hoc extensions provided by underlying platforms without
sacrificing the portability of an application program. If
a user likes to port an application program, only aspect
parts should be rewritten to take into account platform
specific characteristics. Currently, we have just started
our project, and the design of our framework has not
been completed.

In embedded system com-
munities, System-on-Chip(SoC) is a hot topic. In the
future, very small intelligent devices[8] will be embedded
in our world. However, we already have the large amount
of software that is written on COTS software. The COTS
software provides standard API, and does not take into
account the characteristics of the new devices. Therefore,
our approach is very effective for building future embed-
ded systems to exploit platform specific characteristics.

Also, in the future, we like to work on other aspects
such as security in our framework because providing se-
curity requires very careful programming to avoid secu-
rity holes, but it is not easy to hire expert programmers
for security to implement future Internet-scale ubiquitous
computing applications.

5 Conclusion

In this paper, we have described several software de-
sign issues to develop middleware components to realize
Internet-scale ubiquitous computing environments. The
first issue is that programs running in the environments
should take into account extreme heterogeneity. The sec-

ond issue is that these programs should take into account
survivability. Also, we have described a new framework
for building Internet-scale ubiquitous computing environ-
ments.

References

[1] G.D. Abowd, E.D. Mynatt, “Charting Past, Present,
and Future Research in Ubiquitous Computing”, ACM
Transaction on Computer-Human Interaction, 2000.

[2] M. Aksit, B. Tekinerdogan, “Aspect-Oriented Pro-
gramming Using Composition-Filters”, Position Pa-
per for the Aspect Oriented Programming Workshop,
Springer-Verlag, LNCS1543, 1998.

[3] B. Brumitt, J. Krumm, B. Meyers, S. Shafer, “Ubig-
uitous Computing and the Role of Geometry”. IEEE
Personal Communications, August 2000.

[4] Shigeru Chiba, “Load-time Structural Reflection in
Java” In Proceedings of ECOOP 2000 — Object-
Oriented Programming, LNCS 1850, Springer Verlag,
page 313-336, 2000.

[5] N. Gershenfeld, “When Things Start to Think”, Owl
Books, 2000.

[6] Andy Harter, Andy Hopper, Pete Steggles, Andy
Ward, Paul Webster, “The Anatomy of a Context-
Aware Application” | In Proceedings of the 5th Annual
ACM/IEEE International Conference on Mobile Com-
puting and Networking, 1999.

[7] H. Ishii, B.Ullmer, “Tangible Bits: Towards Seam-
less Interfaces between People, Bits and Atoms”, In
Proceedings of Conference on Human Factors in Com-
puting Systems,1997.

[8] J. M. Kahn, R. H. Katz and K. S. J. Pister, ”Mobile
Networking for Smart Dust”, ACM/IEEE Intl. Conf.
on Mobile Computing and Networking (MobiCom 99),
1999.

[9] G. Kiczales, et. al., “Aspect Oriented Programming”,
In Proceedings of the European Conference on Object-
Oriented Programming, Springer-Verlag, 1997.

[10] G.Kiczales, J.Lamping, C.V.Lopes, C.Maeda,
A Mendhekar, G.Murphy, “Open Implementation De-
sign Guidelines “, In proceedings of the 19th Inter-
national Conference on Software Engineering (ICSE),
1997.

[11] T.Nakajima, “Technical Challenges for Building
Internet-Scale Ubiquitous Computing”, In Prepara-
tion.

[12] T Nakajima, T Kitayama, H.Tokuda, “Experiments
with Real-Time Servers in Real-Time Mach”, USENIX
3rd Mach Symposium, 1993.

[13] T Nakajima, et. al., “Integrated Management of Pri-
ority Inversion in Real-Time Mach”, IEEE Real-Time
Systems Symposium, 1993.

[14] T Nakajima, H.Tezuka, A Continuous Media Appli-
cation supporting Dynamic QOS Control on Real-Time
Mach, ACM Multimedia’94, 1994.

[15] T Nakajima, H.Tokuda, “User-level Real-Time Net-
work System on Microkernel-based Operating Sys-
tems”, Kluwer Real-Time Systems Journal Vol.14
No.1, 1998.

[16] Tatsuo Nakajima, “Practical Explicit Binding Inter-
face for supporting Multiple Transport Protocols in
a CORBA System”, In Proceedsing of IEEE Interna-
tional Conference on Network Protocols, 2000.

[17] H. Ossher, P.L.. Tarr, “Hyper/J: Multi-Dimensional
Separation of Concerns for Java”, In Proceedings of
the International Conference on Software Engineering,
2000.

[18] R. Picard, “Affective Computing”, The MIT Press,
1997.

[19] J.Rekimoto and M.Saitoh, ” Augmented Surfaces: A
Spatially Continuous Workspace for Hybrid Comput-
ing Environments”, Proceedings of CHI’99, 1999.

[20] Mark Weiser, “The Computer for the 21st Century”,
Scientific American, Vol. 265, No.3, 1991.

[21] G.Bollella, B.Brosgol, S.Furr, D.Hardin, P.Dibble,
J.Gosling, M.Turnbull, “The Real-Time Specification
for Java”, Addison-Wesley, 2000.

[22] S.Chiba, “Javassist-A Reflection-based Program-
ming Wizard for Java”, In Proceedings of the ACM
OOPSLA’98 Workshop on Reflective Programming in
C++ and Java, 1998.

