The Iguana Experience: Meta-Level Programming
in a Compiled Reflective Language

Implementing Object Persistence

Peter Haraszti, Tilman Schafer, and Vinny Cahill

Distributed Systems Group
Department of Computer Science
Trinity College Dublin, Ireland
{peter.haraszti,tilman.schaefer,vinny.cahill}@cs.tcd.ie

Abstract. Reflective programming languages allow the underlying object model of the host lan-
guage to be extended with features such as persistence, remote method invocation, fault-tolerance
and transactions while providing a strong separation of concerns and transparency. However, ex-
isting architectures, especially for compiled languages such as C+4++, have been found to be too
restrictive in that the binding of objects with a particular object model is static, resulting in less
efficient implementations. In this paper we describe our experiences with implementing persistent
objects using the Iguana reflective programming language.

1 Introduction

Reflective programming languages have been used in a number of case studies in order to provide ap-
plications with extended object behaviour, for example object persistence [KYK¥99], fault-tolerance
[KFRGC98] and atomicity [SW95]. Although it has been shown that reflection offers some advantages
over traditional approaches, including a strong separation of concerns and transparency, it cannot be
denied that meta-level programming remains a rather neglected programming paradigm that has not
yet found its way into widespread use. We therefore took a well researched example of extended ob-
ject behaviour, persistence, and compared a representative, non-reflective implementation (Texas/C++
[SKW92]) with an implementation using the Iguana reflective programming model [GC96]. This imple-
mentation work has given us some exposure to meta-level programming. We were specifically interested
in using a compiled language such as C++, mainly because interpreted languages may not be appro-
priate for low-level system programming. Moreover, reflective extensions of compiled languages have
previously been found to be too restrictive in that the binding of objects with a particular meta-level
representation can usually occur only once, a shortcoming that we tried to address in Iguana. In this
paper, we describe our experiences with reflective programming in Iguana/C++.

2 Overview of Iguana

Tguana [GC96] [Gow97] is a run-time meta-level architecture similar to OpenC++ v1 [Chi95] [Chi93]:
base-level objects are associated with metaobjects, each of which representing or implementing a spe-
cific language construct. Programmers can substitute the default semantics of each of the language
constructs individually by providing customized implementations.

A design issue that distinguishes Iguana from comparable platforms is that it is dynamic in nature:
Iguana offers the dynamic and selective reification of language constructs at run-time, meaning that
customised object models can evolve as the system runs. We have shown that this is particularly im-
portant for building systems with a strong need for dynamic adaptation, both at design time (software
evolution) and run-time (dynamic reconfiguration), as in middleware and operating systems [DSCT00].

The Iguana model provides the concept of a protocol both as a means of defining a new metaobject
protocol (MOP) and of specifying the implementation of a MOP. In Iguana, the definition of a MOP
specifies the set of language constructs to be reified by objects that select the MOP as well as the
set of metaobject classes to be used to implement those reified constructs. The language constructs
(called reification categories) are: Class, Attribute, Method, Creation, Deletion, Invocation, StateRead and

StateWrite. These metaobject classes extend the default classes in order to alter the default behaviour
in the desired way. Metaobjects can be either shared between all instances of a class or local to a
particular object. Classes or individual objects can be associated with protocol definitions by means of
the protocol selection operator (==>>). See Section 3 for examples of protocol definition and selection.

Tguana supports multiple inheritance of protocols: a protocol may extend other protocol(s). The
set of active reification categories for a given object can increase or decrease over time by means of
dynamic protocol selection.

3 Implementing persistent objects using Iguana/C++

Object persistence is implemented as a set of Ignana/C++ protocols based on the Tigger object
support framework [Cah99]. Any type can potentially persist, provided they are associated with the
Persistent protocol. Pointer semantics between persistent objects are preserved. Classes can include
primitive types, class, pointer and array attributes. The broad range of C+4 language issues arising
when designing a persistent C++ extension can be found in [KYK*99].

In our design, we adopted the persistence by reachability approach to determine which objects
are to be retained. In other words, potentially persistent objects that are transitively reachable from
a distinguished persistent root via references will persist between program executions. The states of
these objects are stored in an underlying Persistent Object Store (POS). The implementation of the
Persistent protocol interfaces to the underlying POS and initiates the loading and storing of objects in
the POS as necessary as well as detecting accesses to non-resident objects.

While the use of reflection is essentially transparent to the programmer, the use of persistence
i1s not. This means that the application programmer must be aware of the specifics of the model of
persistence provided by the Persistent protocol, the implications of persistence by reachability and the
physical location of the POS files. When working with persistent objects, the application programmer
may need to distinguish between the cases where a new object needs to be created and initialised
for the first time versus the case where the object has been created by a previous execution of the
program. To allow programs to refer to previously created objects, a simple name service is provided,
which allows the association of symbolic names with persistent objects.

The programming interface to the meta-level is designed in form of an Igunana/C++ extension proto-
col called PEP - the Persistence Extension Protocol. Extension protocols [Gow97] are an Iguana/C++
concept used to provide a structured interface to the meta-level code. The PEP is defined as:

class PEP {

public:
static bool init(char* filename);
static bool close();
static bool record(char* name, char* type, void* object);
static bool lookup(char* name, char* type, void*& object);
static bool remove(char* name);

b

PEP::record allows a symbolic name to be assigned to a persistent object. Upon successful execution,
this method makes the target object a persistent root. PEP::lookup allows the recall of any previously
recorded persistent root object based on its assigned symbolic name. The type argument is used to
check whether the expected type and the type of the restored object match. Finally, PEP::remove
allows the removal of symbolic name/object associations. PEP::init initialises the POS and a call to
PEP::close results in storing all reachable persistent objects.

3.1 Using Object Persistence

An application programmer who wants to avail of object persistence simply uses the default protocol
selection to select the Persistent protocol. For example:

defaultProtocol ==> Persistent;

class Counter {
private:
int 1;
public:
Counter(int a) { i= a; }
int getValue() { return i; }
void setValue(int a) { i= a; }

b

will result in all instances of class Counter being potentially persistent. Within the same source file,
the programmer could define other (sub)classes that would also become potentially persistent. If the
programmer uses multiple source files, each source file with class declaration(s) must include the
same default protocol selection statement. Note that this requirement violates type orthogonality for
persistence. On the positive side, it allows the programmer not to select Persistent for classes that are
transient in nature. In this case, extra care must be taken by the programmer as there is a danger that
persistent object will hold references to non-persistent objects.

An example of an Iguana/C++ program that uses persistent objects is shown below. Note that the
program 1s coded to be aware of whether it needs to create a new object or use a previously created
one.

Counter *pcl;
PEP:init(”./mypos”);
if (firstTime) {

pcl= new Counter(1); // create object and record it in the name service
PEP::record(” /this/counter”, ” Counter”, pcl);
} else { // get reference to object from name service

PEP::lookup(” /this/counter”, ” Counter”, pcl));

}
if (pcl) { // use object
cout << ”Value is: 7 << pcl—> getValue() << endl;

}
PEP::close();

Note that it is not necessary to record every persistent object in the name service. If a persistent object
contains references to other persistent objects, they will also be saved and will be loaded as and when
required in subsequent program executions.

3.2 The Implementation of Object Persistence

In this section we describe the design and implementation of a protocol hierarchy that extends objects
with persistence. We will first describe a more naive implementation that is later optimised for speed.
From the base-level programmer’s point of view there is no difference in the use of object persistence.

Persistent object references are different from C+4 object references. They contain sufficient in-
formation to identify an object in the POS. The process of changing the references on storing/loading
a persistent object is called swizzling/unswizzling. In our implementation, non-resident objects are
represented by proxy objects that occupy the same amount of memory space as the objects that they
represent. When a reference to a non-resident object is unswizzled, its proxy is created, if necessary,
using information in the persistent reference. The persistent reference is then replaced with the ap-
propriate address within the space occupied by the proxy. Of course, subsequent attempts to use the
reference must then be caught.

The protocol hierarchy for the naive implementation is as follows:

protocol Typelnfo { protocol Persistent : Typelnfo {

shared: local:
reify Class : MClass; reify Class : PersistentClass;
reify Attribute : MAttribute; shared:
reify Method : MMethod, reify Creation : PersistentCreation;
} reify Deletion : PersistentDeletion;

reify StateRead : PersistentRead;
reify StateWrite : Persistent Write;
reify Invocation : PersistentInvocation;

b

The protocol Typelnfo allows structural information to be retained about classes. This information
includes the description of the class, its attribute(s) and method(s) in the form of metaobjects. The
Persistent protocol overrides the behaviour of the default C4++4 object model for creation, deletion,
state access (read/write) and method invocation. While the implementation of the Persistent protocol
i1s complex, we will outline the role of each of the metaobject classes being used:

Class: PersistentClass extends MClass to include an object header for each persistent object. This
header contains information about the object’s persistent reference, state in the memory (ab-
sent/present) and the number of references that it contains (including references inherited from
parent classes).

Attribute: MAttribute metaobjects are used to store information about references (e.g. type, size, ac-
cess modifier, offset within the object) for swizzling/unswizzling of references in persistent objects.

Creation: on object creation, PersistentCreation checks whether the object’s class has been installed
in the persistent class register. If not, it installs the class and then initiates the creation of the the
persistent object with an appropriately initialised meta-level and object header.

Deletion: on deleting a persistent object, PersistentDeletion checks if the object has been recorded
with a name in the name service. If so, it removes the entry and then it initiates the removal of
the persistent object together with its meta-level and object header.

Method Invocation: when a method is invoked on a resident object, the default method invocation
is carried out. When a method is invoked on a proxy, control is passed to the PersistentClass
metaobject that handles the object fault. All persistent references in the object’s state are then
unswizzzled.

State Read and Write: like method invocation, control is passed to the PersistentClass metaobject
that is responsible for handling the object fault if the state is accessed on a proxy. Otherwise, the
default state access is carried out.

3.3 Adapting the meta-level

A problem with the implementation described above is that all language operations on a potentially
persistent object are trapped and carried out via the (slower) meta-level, even if the object is already
present in memory and could be treated as a normal C4++ object. To overcome this problem we have
refined the Persistent protocol, which now takes advantage of dynamic protocol selection. The protocol
hierarchy is defined as:

protocol Persistent : Typelnfo { protocol PersistentProxy : Persistent {
shared: shared:
reify Creation : PersistentCreation; reify Class : PersistentClass;
reify Deletion : PersistentDeletion; reify StateRead : PersistentRead;
} reify StateWrite : Persistent Write;

reify Invocation : PersistentInvocation;
5

The modified Persistent protocol only intercepts object creation/deletion and represents an object
that 1s present in memory. The PersistentProxy protocol on the other hand intercedes with all other
language operations and represents an object that i1s absent. There is a dynamic switching between
the two protocols, which is initiated from the meta-level on loading a persistent object from POS.

App. 1 |App. 2

plain C++ 1 1
[guana Run-time check 1.21 1.51
[guana Default 9.3 66.13

Iguana Persistent (naive)| 13.0 88.7
Iguana Persistent (opt.) 1.27 1.56
Texas/C++ 1.03 1.04

Table 1. Measurements showing the relative overhead of Iguana/C++ versus Texas/C++ for 2 benchmark
applications.

For persistent objects that are present in memory, the Persistent is the protocol selected. Because
StateRead, StateWrite and Invocation are not reified, these operations are carried out at the base-level
object without involving the meta-level.

Absent objects (i.e., persistent objects that are referenced by present persistent objects but not
loaded from the POS yet) are associated with the PersistentProxy protocol; all language operations
are reified. When an operation is requested on a proxy base-level object, the operation is directed to
the meta-level. The object fault is handled by the meta-level and the object is loaded from the POS.
The POS completes the request and reference unswizzling is performed. The object is now present in
memory and the meta-level configuration switches to the Persistent protocol, consequently all further
operations are now carried out directly. This results in a significant performance gain.

4 Evaluation

We applied both the Persistent protocol and the Texas/C++ persistent store to two different sample
applications. Application 1 creates and walks a tree of objects, application 2 calculates the number of
permutations of a set of elements and is highly recursive. The measurements were conducted on a Sun
Sparcstation under Solaris 2.5 1.

The results are summarised in table 1. We carried out a number of measurements, namely

1. Run-time check: shows the costs of the run-time checks inserted into the application that allow to
dynamically switch on/off reification of objects access.

2. Default: shows the costs of the Iguana/C++ default protocol, i.e. the costs of performing all of the
operations via the meta-level.

3. Persistent (naive): naive implementation of persistent objects: all invocations are trapped and
carried out via the meta-level.

4. Persistent (opt.): shows the overhead of the optimised implementation of the Persistent protocol.

5. Texas/C++: overhead using the Texas/C++ PStore

For all the measurements, we did not take into account the costs of object creation/deletion since
they depend to a great extent on the implementation of the underlying persistent object store. The
numbers show that although the overhead of reified language operations is high, we can achieve a
reasonable overhead in the case where we switch off reification after the object has been loaded into
memory, between 20—and 50%. This overhead consists of the run-time check and the additional costs
for loading the object the first time 1t is accessed.

5 Concluding Remarks and Future Work

This paper described our experiences with implementing object persistence using the Iguana reflective
programming language. This work was motivated by the fact that despite ongoing research in the
reflection community over the last decade, meta-level programming is still restricted to a number of
experimental research architectures and has not found widespread acceptance.

! This rather antiquated configuration was the only one that allowed the proper installation of Texas/C+.

We briefly presented the Iguana model, which offers a number of features that address some of
the shortcomings found in comparable platforms, most notably the ability to augment, compose and
dynamically select meta-level configurations. Our experiences show that the ability to dynamically bind
objects to different meta-level configurations as provided by Iguana is an essential feature in order to
gain a performance that can compare well with dedicated solutions.

With our Persistent design, and in general, full separation of concerns for object persistence is not
attainable. From the base-level programmer’s point of view, it seems relatively easy to avail of object
persistence. The steps involved with adding support for persistent objects to existing applications using
Iguana consist of associating Persistent with classes that are to be made persistent, the insertion of code
to register/lookup persistent objects and an additional pre-processing phase to apply the Iguana model.
It should not be denied that due to the complexity of C++ it is not trivial to provide a fully reflective
language extension. So for example it 1s only possible to make heap allocated objects persistent due to
the inability to intercede with the creation of stack allocated objects.

Meta-level programming is still a non-trivial task and requires a sound understanding of the se-
mantics of the underlying object model. Especially debugging of meta-level code has in our experience
shown to be tedious. This aside, we believe that the interface provided by Iguana allows a modular
and structured development of meta-level architectures. Once useful protocols have been implemented,
they can easily be used by less experienced base-level programmers.

Currently, we are working on a Remote protocol for implementing remote method invocation on
reflective objects. Our plan is to make this Remote implementation interwork with Java RMI in order
to directly compare performance.

Future work will investigate the composition of more complex behaviours, for example persistence,
remote objects, fault tolerance and object migration. Our long term goal is to provide a library of
independently composable protocols that can easily be integrated into applications using the Iguana
protocol inheritance and selection mechanisms.

References

[Cah99] Vinny Cabhill. Tigger: A framework supporting distributed and persistent objects. In Mohamed E.
Fayad, Douglas C. Schmidt, and Ralph E. Johnson, editors, Implementing Application Frameworks:
Object-oriented Frameworks at Work, pages 485-519. Wiley, 1999.

[Chi93] Shigeru Chiba. Open C++ release 1.2 programmer’s guide. Technical Report TR 93-3, Department
of Information Science, University of Tokyo, 1993.

[Chi95] Shigeru Chiba. A metaobject protocol for C+4. In Carrie Wilpolt, editor, Proceedings of the
1995 Conference on Object-Oriented Programming Systems, Languages and Applications, pages
285-299. ACM Special Interest Group on Programming Languages, ACM Press, October 1995.
Also SIGPLAN Notices 30(10), October 1995.

[DSCT00] Jim Dowling, Tilman Schéfer, Vinny Cahill, Peter Haraszti, and Barry Redmond. Using reflection
to support dynamic adaptation of system software: A case study driven evaluation. In Walter
Cazzola, Robert J. Stroud, and Francesco Tisato, editors, Reflection and Software Engineering,
volume 1826 of Lecture Notes in Computer Science, pages 171-190. Springer-Verlag, Heidelberg,
Germany, June 2000.

[GCo6] Brendan Gowing and Vinny Cahill. Meta-object protocols for C++: The Iguana approach. In
Proceedings of Reflection *96, pages 137-152. XEROX Palo Alto Research Center, April 1996.

[Gow97] Brendan Gowing. A Reflective Programming Model and Language for Dynamically Modifying
Compiled Software. PhD thesis, Department of Computer Science, University of Dublin, Trinity
College, 1997.

[KFRGC98] M. O. Killijian, J. C. Fabre, J. C. Ruiz-Garcia, and S. Chiba. A metaobject protocol for fault-
tolerant CORBA applications. In Proceedings of the 17" Symposium on Reliable Distributed Sys-
tems, pages 127-134, September 1998.

[KYKT99] Mangesh Kasbekar, Shalini Yajnik, Reinhard Klemm, Yennun Huang, and Chita Das. Issues
in the Design of a Reflective Library for Checkpointing C+4 Objects. In Proceedings of the
18" Symposium on Reliable Distributed Systems, 1999.

[SKW92] V. Singhal, S. V. Kakkad, and P. R. Wilson. Texas: An Efficient Portable Persistent Store. In 5th
International Workshop on Persistent Object Systems, September 1992.

[SW95] Robert J. Stroud and Zhixue Wu. Using metaobject protocols to implement atomic data types. In
Walter Olthoff, editor, Proceedings of the 9" European Conference on Object-Oriented Program-
ming, volume 952 of Lecture Notes in Computer Science, pages 168-189. Springer-Verlag, August
1995.

