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Abstract. Platform portability is one of the utmost demanded prop-
erties of a system today, due to the diversity of runtime execution en-
vironment of wide-area networks, and parallel programs are no excep-
tions. However, parallel execution environments are VERY diverse, could
change dynamically, while performance must be portable as well. As a
result, techniques for achieving platform portability are sometimes not
appropriate, or could restrict the programming model, e.g., to simple
message passing. Instead, we propose the use of reflection for achieving
platform portability of parallel programs. As a prototype experiment, a
software DSM system called OMPC++ was created which utilizes the
compile-time metaprogramming features of OpenC++ 2.5 to generate
a message-passing MPC++ code from a SPMD-style, shared-memory
C++ program. The translation creates memory management objects on
each node to manage the consistency protocols for objects arrays resid-
ing on different nodes. Read- and write- barriers are automatically in-
serted on references to shared objects. The resulting system turned out
to be quite easy to construct compared to traditional DSM construc-
tion methodologies. We evaluated this system on a PC cluster linked
by the Myrinet gigabit network, and resulted in reasonable performance
compared to a high-performance SMP.

1 Introduction

Due to rapid commoditization of advanced hardware, parallel machines, which
had been specialized and of limited use, are being commoditized in the form of
workstation and PC clusters. On the other hand, commodity software technolo-
gies such as standard libraries, object-orientation, and components are not suffi-
cient for guaranteeing that the same code will work across all parallel platforms
not only with the same set of features but also similar performance characteris-
tics, similar fault guarantees, etc. Such performance portability is fundamentally
difficult because platforms differ in processors, number of nodes, communication
hardware, operating systems, libraries, etc., despite commoditization.



Traditionally, portability amongst diverse parallel computers have been ei-
ther achieved by standard libraries such as MPI, or parallel programming lan-
guages and compilers such as HPF and OpenMP[Ope97]. However, such ef-
forts will could require programming under a fixed programming model. More-
over, portable implementation of such systems themselves are quite difficult
and require substantial effort and cost. Instead, Reflection and open compil-
ers could be alternative methodologies and techniques for performance portable
high-performance programs.

Based on such a belief, we are currently embarked on the OpenJIT[MOS*98]
project. OpenJIT is a (reflective) Just-In-Time open compiler written almost
entirely in Java, and plugs into the standard JDK 1.1.x and 1.2 JVM. At the
same time, OpenJIT is designed to be a compiler framework similar to Stan-
ford SUIF[Uni], in that it facilitates user-customizable high-level and low-level
program analysis and transformation frameworks. With OpenJIT, parallel pro-
grams of various parallel programming models in Java compiled into Java byte-
code, will be downloaded and executed on diverse platforms over the network,
from single-node computers to large-scale parallel clusters and MPPs, along with
customization classes for respective platforms and programming models using
compiler metaclasses?.

The question is, will such a scheme be feasible, especially with strong re-
quirements for performance of high-performance parallel programs? Moreover,
how much metaprogramming effort would such an approach take? So, as a pre-
cursor work using OpenC++4, we have employed reflection to implement DSM
(distributed shared memory) in a portable way, to support Java’s chief model
of parallel programming i.e., the multithreaded execution over shared mem-
ory. More specifically, we have designed a set of compiler metaclasses and the
supportive template classes and runtimes for OpenC++2.5[Chi95, Chi97] that
implements necessary program transformations with its compile-time MOP for
efficient and portable implementation of software-based DSM for programs writ-
ten in (shared-memory) SPMD style, called OMPC++. A multithreaded C++
program is transformed into message-passing program in MPC-++[Ish96] levelO
MTTL (multithread template library), and executed on our RWC(Real-World
Computing Partnership)-spec PC-cluster, whose nodes are standard PCs but
interconnected with the Myrinet[Myr] gigabit network, and running the RWC’s
SCore parallel operating system based on Linux.

The resulting OMPC++ is quite small, requiring approximately 700 lines of
metaclass, template class, and runtime programming. Also, OMPC++ proved to
be competitive with traditional software-based DSM implementations as well as
hardware-based SMP machines. Early benchmark results using numerical core
programs written in shared-memory SPMD-style programs (a fast parallel CG-
kernel, and parallel FFT from SPLASH2) shown that, our reflective DSM im-
plementation scales well, and achieves performance competitive with that of
high-performance SMPs (SparcServer 4000, which has dedicated and expensive

L OpenJIT is in active development, and is currently readying the first release as of
Feb. 1, 1999.



hardware for maintaining hardware memory consistency). Not only this result
serves as a solid groundwork for OpenJIT, but OMPC++ itself serves as a high-
performance and portable DSM in its own right.

2 Implementation of a Portable, High-Performance
Software DSM

DSM (Distributed Shared Memory) has had multitudes of studies since its orig-
inal proposal by Kai Li[LH89], with proposals for various software as well as
hardware assisted coherency protocols, techniques for software-based implemen-
tation, etc. However, there have not been so much work with platform (perfor-
mance) portability in mind. In order for a program to be portable, one must not
extensively alter the underlying assumptions on the hardware, OS, the program-
ming language, which are largely commoditized. Moreover, as a realistic parallel
system, one must achieve high performance and its portability across different
platforms.

Below, we give an outline of our OMPC++ system with the above require-
ments in mind, as well as the building blocks we have employed.

2.1 Overview of the OMPC++ system

OMPC++ takes a parallel multithreaded shared-memory C++ program, trans-
forms the program using compile-time metaprogramming, and emits an exe-
cutable depending on various environments, those with fast underlying message
passing in particular(Fig. 2). OMPC++ itself does not extend the C++ syntax
in any way.

More concretely, OMPC++ defines several template classes (distributed shared
array classes), and OpenC+ metaclasses for performing the necessary program
transformations for implementing software DSM (such as read/write barriers
to shared regions, and initialization/finalization). The OpenC++ compiler gen-
erates a customized program transformer, which then transforms the program
into message-passing MPC++ program, which is further compiled into C++
and then onto a binary, and finally linked with DSM template libraries as well
as MPC++ runtime libraries, resulting in an executable on the RWC cluster.

Our system exhibits competitive and sometimes superior performance to soft-
ware DSM systems implemented as class libraries. This is because OMPC++ can
analyze and pinpoint at compile time, exactly where we should insert runtime
meta-operations (such as read/write barriers) that would result in performance
overhead. Thus, we only incur the overhead when it is necessary. On the other
hand, for traditional class-based DSM systems, either the programmer must
insert such meta-operations manually, or it would incur unnecessary runtime
overhead resulting in loss of performance.



2.2 Underlying ‘Building-Blocks’

We next describe the underlying ‘building-blocks’, namely OpenC++, MPC++,
SCore, and the PC Cluster hardware(Fig. 1). We note that, aside from OpenC++,
the components could be interchanged with those with similar but different func-
tionalities and/or interfaces, and only the metaclasses have to be re-written. For
example, one could easily port OMPC++ to other cluster environments, such
as Beowulf[Beo].

Application

Program Transformer

DSM environment support
PP OpenC++ Metaclass

DSM Template Library

Backend Runtime Environment
(User-Level Thread, Message Passing Library)

Compile-Time
++
MPC MOP

Process Management / Messaging Layer

SCore

Parallel Machine using Commodity Hardware

RWC PC Cluster, Beowulf, etc.

OpenC++

Fig. 1. Building-blocks hierarchy

OpenC++ OpenC++ provides a compile-time MOP capability for C++. By
defining appropriate compiler metaclasses, the OpenC++ compiler effec-
tively generates a preprocessor that performs the intended program trans-
formations. The preprocessor then can be applied to the base program for
appropriate meta-operations. Compile-time MOP could eliminate much of
the overhead of reflection, and coupled with appropriate runtime, could simu-
late the effects of traditional run-time MOPs. (OMPC++ currently employs
OpenC++ 2.5.4.)

MPC++ MPC++ 2.0 Level 0 MTTL is a parallel object-based programming
language which supports high-level message-passing using templates and in-
heritance. MTTL is solely implemented using language features of C++, and
no custom language extensions are done. For OMPC++, we employ most of
the features of MTTL, such as local/remote thread creation, global pointers,

and reduction operations?.

2 MPC++ Level 1[Ie96] supports compile-time MOP features similar to OpenC++.
The reason for not utilizing them was not a deep technical issue, but rather for



RWC PC Cluster and SCore The default OMPC++ library emits code for
RWC PC cluster, although with a small amount of metaclass reprogram-
ming it could be ported to other cluster platforms. The cluster we employed
is a subset of the RWC cluster II, with 8-10 Pentium Pro (200MHz) PC
nodes interconnected with Myrinet gigabit LAN. The nodes in the cluster
communicate with each other using PM, a fast message-passing library, and
the whole cluster acts as one parallel machine using the SCore operating sys-
tem based on Linux. SCore is portable in that it only extends Linux using
daemons and device drivers.

source

program OMPC++
- -m-em-=-=-f-------------------ooo-----=--- i
E program ¢ (1) Open(|:++ '
(A translator - metaclass .
; compile for translation |
' with OpenC++ :
, translated E
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target code
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Fig. 2. Program Transformation and Compilation

3 Implementation of Software DSM in OMPC++

We outline the process of compilation and execution in OMPC++(Fig. 2).

— OpenC++ generates a preprocessor from the OMPC++ metaclasses (1).

— The source program is transformed using the preprocessor (2). The trans-
formed program is a message-passing MPC++ program.

— MPC++ adds compiler variables such as the SCore library, and hands it off
to the backend C++, which generates the executable (3).

practicality at the time of OMPC++ development such as stability and compilation
speed. In theory we could replicate our work using MPC++ Level 1.



A real compilation session is depicted in Fig. 3. The numbers correspond to
those in Fig. 2.

Load SharableClass-init.so.. Load
SharableClass.so.. Initialize.. Done.

% ompc++ -m -- SharableClass.mc | (1)
% ompc++ -v -- -0 cg cg.cc problem.o |
[Preprocess... /usr/score/bin/mpc++ |
-D__opencxx -E -0 cg.occ -x c++ cg.ccl |

compiling cg.cc [(2)
[Translate... cg.occ into: cg.ii] I
|
|

[Compile... /usr/score/bin/mpc++ |

-0 cg cg.ii problem.o] |
compiling cg.ii 1 (3)
[done.] |

[GC happened 10 times.] |

Fig. 3. A Compilation Session for OMPC++

3.1 Program Transformation

There are 3 steps in the program transformation for implementing the DSM
functionality:

1. Initialization and finalization of memory management objects created on
each node.

2. Initialization of shared memory regions (creation of management tables, al-
location of local memory).

3. Insertion of locks and read/write barriers to shared variables in the program.

The examples of program transformations are depicted in Fig. 4 and Fig. 53.
The program transformation possible with OpenC++ is restricted to trans-
formation of base programs, and in particular those of class methods; so, for
OMPC++, we assume the user program to conform to the following structure:

sdsm_main() { .. }; // main computing code
sdsm_init() { .. }; // application-specific initialization
sdsm_done() { .. }; // application-specific finalization

3 Note that, there are restrictions of the template features in the metaclasses for the
current version of OpenC++, forcing us to do some template expansions manually.



sdsm_init() is called following the system-level DSM initialization. sdsm_main()
function is the body of parallel code, and is called independently in parallel on
each PE after initialization of the shared memory region. sdsm_done() is called
after sdsm_main() terminates, followed by system-level DSM finalization, after
which the whole program terminates. sdsm_init() and sdsm_done() is sequentially
executed on a single PE (normally PE 0), while sdsm_main() is executed on all
the PEs.

The following functions are added as a result of program transformation:

mpc_main() { .. }; // the main MPC++ function
Initialize() { .. }; // initialization of shared region
Finalize() { .. }; // finalization: freeing of shared region

Because the resulting code of program transformation is MPC++ code, the
program starts from mpc_main(). This in turn calls Initialize(), which then calls
the application-specific sdsm_init(). After the computation completes, sdsm_done()
is called, and finally Finalize() is executed on all the processors, and the program
terminates.

Shared<double> a(100); // .. (1)

Shared<double> b;

sdsm_main() {
b = (double*)malloc(sizeof (double) * 10); // ..(2)
b[0] = al0];

};

sdsm_init() { a[0] = 10.0; ... };

sdsm_done() { ... };

Fig. 4. OMPC++ Program before Transformation

Initialization and Finalization The initialization process initializes the mem-
ory management object and the DSM objects. These are quite straightforward,
and only involve initialization of locks (the MPC++ Sync object). Finalization
involves freeing of all the memory regions and the associated management ob-
jects, and are also straightforward.

Initialization of Shared Regions There are two types of initialization of
shared regions, depending on when the memory is allocated by the user. Type
1 is when the size of the shared region (on variable definition) is fixed, and
initialization is done in Initialize(). Transformation from Fig. 4-(1) to Fig. 5-(1)
is an example. Type 2 is when the user does not specify the size on variable
definition, but instead dynamically allocates a memory region within sdsm_init,
sdsm_main(); in this case, allocation is done on the spot as we see in Fig. 4-(2)
to Fig. 5-(2).



Shared<double> a(100);
Shared<double> b;

sdsm_main() { b.allocate(10); // .. (2)
{ double _sym52501_8 = a[0]; // ..(5)
b.WriteStart(0); // ..(3)
b(0) = _symb2501_8;
b.WriteEnd(0); } ... }; // ..(3)
sdsm_init() { { a.WriteStart(0); // ..(4)
a(0) = 10.0;
a.WriteEnd(0); } ... }; // .. (4)
sdsm_done() { ... };
Initialize() { a.allocate(100); }; // ..(1)
Finalize() { a.free();
b.free(); };

mpc_main() {
invoke Initialize() on all PEs.
sdsm_init();
invoke sdsm_main() on all PEs.
sdsm_done() ;
invoke Finalize() on all PEs.

Fig. 5. After Transformation

Access to Shared (Memory) Regions For accessing shared regions, lock /unlock
are inserted on writes. Fig. 5-(3),(4)). When a shared variable occurs on the RHS
expression, writes are first performed to a temporary variable to avoid duplicate
lockings (Fig. 5-(5)) on further RHS evaluation. Read access does not require
any locks.

3.2 Program Transformation Metaclasses

In OpenC++, metaclasses are defined as subclasses of class Class, and by over-
riding the methods, one could change the behavior of programs. OMPC++ over-
rides the following three OpenC++ methods:

Translatelnitializer Called when the shared class object is created. We can
then obtain the name, type, size, and other information of the distributed
shared array object, and are used for initialization of the shared regions.

TranslateAssign Called when there is an assignment to the shared class object.
We can then transform the initialization and the writes of the distributed
shared array objects. We analyze the expression which is passed as a pa-
rameter by the OpenC++, and if there is an malloc (or other registered
allocation functions), then we perform similar task as the Translatelnitializer
to obtain the necessary information, and if it is within sdsm_main(), the ini-
tialization code for shared regions directly replaces the allocation. When a
shared variable occurs on the RHS expression, TranslateAssign generates a



new statement which assigns it to a temporary variable. For assignments to
shared variables, their operators [] are transformed to operators (), and the
WriteStart() and WriteEnd() methods are inserted to sandwitch the assign-
ment.

FinalizeInstance Called upon the end of transformation. Here, we insert the
initialization and finalization functions discussed earlier. More concretely, we
generate Initialize(), Finalize() based on the information obtained with Trans-
latelnitializer and TranslateAssign, and also generate mpc_main(), obtaining
the whole program.

We illustrate a sample metaprogram of TranslateAssign in Fig. 6. Here, we
sandwitch the assignment with lock method calls. Metaprograms are quite com-
pact, with only 250 lines of code (does not include runtime as well as template
code, etc.).

Ptree* SharedClass::
TranslateAssign(Environment#* env,
Ptree* obj, Ptreex op, Ptree* exp){
Ptree* exp0 = ReadExpressionAnalysis(env, exp);
Ptree* objO = WriteExpressionAnalysis(env,obj);
return Ptree::List(objO, op, exp0); 1};
Ptree* SharedClass::
WriteExpressionAnalysis(Environment* env, Ptreex exp){
Ptree *obj = exp->First();
Ptree *index = exp->Nth(2);
if (!index->IsLeaf())
index = ReadExpressionAnalysis(env, index);
InsertBeforeStatement (env,
Ptree::qMake(" ‘obj‘.WriteStart(‘index‘);\n"));
AppendAfterStatement (env,
Ptree::qMake("\n‘obj‘.WriteEnd(‘index‘);\n"));
return Ptree::qMake("‘obj‘(‘index‘)"); };

Fig. 6. Metaprogram Example

3.3 Distributed Shared Memory

OMPC++ does not implement DSM transformation with OpenC++ compile-
time MOP alone; rather, it also utilizes C++ templates and operator overload-
ing. Also, in OMPC++, read/write barriers are performed in software, instead
of (traditional) hardware page-based strategies such as TreadMarks[ACD*96].
Although such checks are potential sources of overhead, they provide the benefit
of maintaining the coherency blocks small, avoiding false sharing. Recent work
in Shasta[SGT96] has demonstrated that, with low-latency networks, software-
based checks do not incur major overhead, even compared to some hardware



Table 1. Entry of the management table

addr pointer into the real (local) memory (4)
copyowner |pointer to a list of PEs holding a copy (4)
owner the block owner (2)

copyowers|# of PEs with copies (2)
havedata |A flag indicating whether data is present (1)
lock Lock (1)
dummy Padding (2)
() indicates the number of bytes for the field

based DSMs. Moreover, for portability, software-based checks are substantially
better than paged-based checks, as the latter would incur adapting to differing
APIs and semantics of trapping page faults and upcalling into the user code for
a variety of operating systems.

We note that, with languages such as Java which does not have templates,
more program transformation responsibility will be delegated to metaprogram-
ming. It would be interesting to compare the real tradeoffs of the use of templates
versus metaprograms from the perspective of performance, code size, ease-of-
programmability, etc.

Distributed Shared Array Class Distributed Shared Array Class is a tem-
plate class written in MPC++. The class implements a shared array as the name
implies, and objects are allocated on all the PEs. For the current version, the
memory consistency protocol is write-invalidate with sequential consistency, and
weaker coherence protocols and algorithms such as LRC[Kel94] are not employed.
The array elements are organized in terms of consistency block size, which is the
unit of memory transfer among the nodes. The size of the block can be specified
with BlockSize, and can be of arbitrary 2" size. The management tables of the
block resides entirely within the class. Each entry in the table is as shown in
Table 1, and is aligned to 16 bytes to minimize the cost of address calculations.
When the memory allocation method allocate(size) is called, (size/BlockSize)
entry management table is created, and each PE allocates (size/#PE) memory
for storage (excluding the copies).

Read Access Processing Because we employ the array access operator [, we
overload the [] operator in the distributed shared array class. The overloaded
behavior is as follows:

1. If the havedata flag is true, then return that address.

2. If the havedata flag is not true, then allocate the necessary copy block,
and request for copying of the block contents to the block owner by
passing the MPC++ global pointer to the owner.

3. The requested owner of the block remotely writes the contents of the
block onto the copy block pointed to by the global pointer.

4. After the write is finished, the local address of the copy block is returned.



Write Access Processing The write access overloads the () operator, but re-
call that the OMPC++ metaclasses have inserted the lock methods WriteS-
tart() and WriteEnd(). The overloaded behavior is as follows, for write inval-
idation. Other protocols could be easily accommodated.

1. WriteStart() sets the lock flag of the corresponding management table

entry. If it is already locked, then wait.

2. If the PE is the block owner, and there are copies elsewhere, then issue

invalidation messages to the PEs with copies.

3. If the PE does not have the block data, then request for a copy in the

same manner as the read.

4. If the PE is not the block owner, then transfer the ownership. The pre-
vious owner notifies to the other PEs that the ownership change has
occurred.

The operator () checks the havedata flag, and returns its address.

6. WriteEnd() resets the lock flag.

ot

Optimizations Minimizing software overhead is essential for the success of
software DSM algorithms. Upon analysis, one finds that the overhead turns out
to not be caused by invalidation, but primarily due to the reads/writes which
require address translation and barrier checks. In OMPC++, we optimize this
in the following way. For accessing the management table entries, we have made
the entry size to be 2" so that shifts could be used instead of multiplications
and divisions. The overloaded [] and () operators as well as WriteStart() and
WriteEnd() are inlined. Moreover, the block address computed in the last access
is cached; as a result, if one accesses the same block repeatedly (which is the
assumed action of “good” DSM programs in any case), read/write access speed
are substantially improved.

One could further define sophisticated metaclasses to perform more through
analysis and program transformation to physically eliminate coherency messages,
as is seen in [LJ98]. As to whether such analysis are easily encodable in terms
of compiler metaclasses of OpenC++ is an interesting issue, and we are looking
into the matter.

4 Performance Evaluation

The current version of OMPC++ is approximately 700 lines of code, which
consists of 250 lines of metaclass code, and 450 lines of template runtime code.
This shows that, by the use of reflection, we were able to implement a portable
DSM system with substantially less effort compared to traditional systems.

In order to investigate whether OMPC++ is sufficiently fast for real par-
allel programs, we are currently undertaking extensive performance, analysis,
pitting OMPC++ with other software-based DSM algorithms, as well as large-
scale SMP systems such as the 64-node Enterprise 10000. Here we report on
some of our preliminary results on the PC cluster, including the basic, low-level
benchmarks, as well as some parallel numerical application kernels, namely the
CG kernel, and the SPLASH2[WOT"95] FFT kernel and LU.



4.1 Evaluation Environment

Evaluation environment is a small subset of the PC Cluster II developed at
RWCP (Real-World Computing Partnership) in Tsukuba, Japan. The subset
embodies 8-10 200MHz Pentium Pro PC nodes with 64MB memory (of which
8 is used for benchmarking), and interconnected by the Myrinet Gigabit net-
work (LinkSpeed 160MB/s). The OS for this system is the Linux 2.0.36-based
version of SCore, and uses MPC++ Version 2.0 Level 0 MTTL as mentioned.
The underlying compiler is pgcc 1.1.1, and the optimization flags are “-O6 -
mpentiumpro -fomit-frame-pointer -funroll-loops -fstrength-reduce -ffast-math
-fexpensive-optimizations”. For comparative environment, we use the Sparc En-
terprise Server 4000, with 10 250MHz UltraSparc II/1Mb, and 1Gb of memory.
The Sun CC 4.2 optimization options are “-fast -xcg92 -x05”.

4.2 Basic Performance

As a underlying performance basis, we measured the read/write access times. For
access patterns to shared arrays, we measured continues access, strided access,
and write access with invalidation.
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Fig. 7. Throughput of basic remote memory operations

Continuous Read/Write Accesses We measured the total read/write access
times of size 1024x1024 double shared array. All the blocks are setup so that
they reside on other PEs; in other words, none of the blocks are initially owned
or cached. For reads, this obviously means that accesses must first start by
fetching the copies. For writes, since none of the blocks are cached on any of the
PEs, write access does not involve invalidation, and thus most of the incurred
overhead is remote writes.

We show the averaged times of a single access for different block sizes in
Fig. 8. For both reads and writes, average access time decreases with increased



block size. This is naturally due to amortization of message handling and lock
processing overhead. When block size increases further, we see a falloff due such
amortization has mostly making the overhead negligible, and the speed is pri-
marily determined by the network bandwidth. For BlockSize 64kbytes, it is
0.34usec/1dword, which corresponds to 23.5Mbytes/sec. By comparison, raw
MPC++ RemoteMemoryRead is approximately 40Mbytes/sec (Fig. 7). The dif-
ference here is the cost of address translation and barrier on the read operation.

continuous read/write

Read
A [ wiie

R
S N »
L
L

Time [ 1 sec]

o N A O ®

64 256 16384 65536

1024 4096
BlockSize [bytes]

Fig. 8. Cost of Continuous Reads and Writes Accesses

Strided Read/Write Accesses Strided Access is a worse-case scenario where
the arrays are serially accessed at a stride, and the stride is equal to BlockSize.
As a result, no cached access can occur, but rather the entire block must be
transferred per each memory access. The size and the initialization of memory
is identical to the continuous access. However, the number of elements accessed
would differ according to the stride. The results are shown in Fig. 9. As we can
see, the access times increase along with the increase in BlockSize. This is due to
increased memory transfer per each access. Also, the difference between read and
write diminishes; this is because the transfer times become dominant, despite
using a very fast network, as opposed to software overhead such as address
translation and locking.

Accesses with Invalidation Because we currently employ the standard write-
invalidate algorithm, the read cost will remain constant, while the write cost
could increase as the number of shared copies of the block increases, as inval-
idate message has to be broadcast to all the PEs holding the copy. In order
to measure the overhead, we varied the number of PEs with copies to 0,1,2,6,
and the BlockSize to lkbytes and 16kbytes, whose result is shown in Table 2.
Here, we observe that for such small number of sharings, the differences are
negligible. This is because message passing of MPC++ on SCore is physically
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Fig. 9. Cost of Strided Read and Write Accesses

asynchronous, and as a result, multiple invalidations are being effectively issued
in parallel. Also, access times is independent of block size, as invalidation does
not transfer any memory, so its cost is independent of the BlockSize.

One might argue that for a larger number of sharing, parallelism in the net-
work interface would saturate, resulting in increased cost. While this is true,
research has shown that average number of sharing for invalidation-based proto-
col is typically below 3. This is fundamental to the nature of the write-invalidate
algorithm, as shared blocks are thrown away per each write.

Table 2. Cost of Write Accesses with Invalidation (BlockSize=1kbytes,16kbytes)

Time(usec)
Sharings|BlockSize|BlockSize
(#PEs) 1kbytes| 16kbytes

0 4.80 5.26
1 31.27 33.05
2 46.06 48.27
6 76.68 78.24

4.3 CG (Conjugate Gradient Solver Kernel)

As a typical parallel numerical application, we employ the CG (Conjugate Gradi-
ent) Solver Kernel, without preconditioning. As a comparative basis, we execute
the equivalent sequential program on one of the nodes of the PC cluster, and
also on the Sun Ultra60(UltraSPARC II 300MHz, 256Mbytes, Sun CC 4.2). Here
are the parameters for the measurements:

— Problem sizes: 16129 (197 iterations), 261121 (806 iterations)



— BlockSizes: 256, 1k, 4k, 16kbytes
— Number of PEs: 1, 2, 4, 8

The results are shown in Fig. 10 and Fig. 11.
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Fig.11. CG Kernel Result, Problem Size=261121

According to the results of Fig. 10, we obtain only about 5% speedup from
1PE to 2PEs, whereas we observe approximately linear speedups from 2PEs
to 8PEs. This is primarily due to the software overhead of DSM, in particular
write-invalidation does not occur for 1PE; whereas they do occur for 2PEs and
above. Even with 8PEs, we do not match the speed of sequential UltraSparc
IT 300MHz, which has much faster floating performance than a Pentium Pro
200MHz. We do attain about factor of 2 speedup over a sequential execution on
a cluster PC node. For BlockSize of 16KB, we see that performance degrades
significantly. This is due to the overhead of excessive data transfer.



With larger problem size as in Fig. 11, the overall characteristics remain the
same. We still see speedups of range 3.8 to 4.0 with 8 processors. Here, BlockSize
is almost irrelevant for overall performance; this is because, as the amount of
data required for computation is substantially larger than BlockSize, and thus
we do not have wasteful internote data transfers. On the other hand, compared
to overall computation, the software overhead of message handling is negligibly
small.

We also executed the same program on the Sun Enterprise 4000 (UltraSPARC
1T 250MHz, 10PEs). There the speedup was approximately 6 with 8 processors.
The overhead is primarily due to barrier operations.

4.4 SPLASH2 FFT and LU

Finally, we tested the SPLASH2 [WOT*95] FFT and LU kernel (Fig. 12) with
1kbytes BlockSize. In FFT, the problem size is 64Kpoints. In LU, the matrix
size is 512.

SPLASH2 FFT (Problem size:64K points) SPLASH2 LU (Matrix size:512)
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Fig.12. SPLASH2 FFT and LU

As was with the CG kernel, speedup curves are similar. The required change
to the original SPLASH2 was approximately 70 lines out of the 1008 in FFT,
80 lines out of the 1030 in LU, mostly the required top-level program structure
(with sdsm_main, etc.) and memory allocations.

Shasta employs various low-level optimization strategies, that have not been
implemented on OMPC++, such as bunching multiple read-/write-accesses. As
an experiment, to qualify the effect of bunching technique, we manually applied
it to the daxpy function in the LU kernel on OMPC++, attaining about factor
of 2 speedup in terms of the total execution time(Fig. 13).

5 Related Work

There are several work on implementing DSM features using program trans-
formations [SGT96]. All of them have had to develop their own preprocessor,
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Fig. 13. SPLASH2 LU with bunched read-/write-accesses

and is thus expensive, and furthermore not portable nor adaptable to complex
programming languages such as C++. By utilizing the reflective features of
OpenC++, we have demonstrated that, developing a program transformer for
an efficient DSM system was an easy effort with a small number of metaclass
customizations, much easier to maintain and tune the code. In fact, substantial
tuning and experimentation was possible by small changes to the metacode.

Shasta [SGT96] is a DSM system that performs program transformation at
program load time, and is thus more language independent than other program
transformation systems. Shasta is specifically tailored to work on DEC Alpha
PEs interconnected by the MemoryChannel low-latency gigabit network. Shasta
is extremely efficient, in that it optimizes the read/write barrier overhead for
common cases down to two instructions. This is currently possible because Shasta
performs program transformation at the binary level. On the other hand, Shasta
is much harder to port to other platforms, as it is hardware and processor-binary
dependent. There are numerous low-level optimization techniques that Shasta
uses, that have not been implemented on OMPC++. We are planning to exploit
such techniques with more metaprogramming, with the aid of better optimizing
compilers such as Kai C++.

Midway[BZS93] and CRL[JKW95] are object-based DSM systems. Midway
employs entry consistency as the coherency protocol, and read/write barriers
are inserted by a special compiler. Thus, one must craft such a compiler, and
as such portability and extensibility suffers. For example, it is difficult to add
a new coherency protocol or porting to different hardware platform without
detailed knowledge of the compiler. On the other hand, in CRL, the barriers
must be inserted by the user. This is quite error-prone, and such bugs would
be very hard to detect, as they will be dynamic, transient memory bugs. By
using reflection, OMPC++ was created by only small set of customization in
the underlying workings of the C++, and is easily understandable, thus being
easily maintainable, customizable, and portable.

As a common shared memory programming API, OpenMP[Ope97] has been
proposed as a standard. In OpenMP, the user adds appropriate annotations



to the source code to indicate potential SPMD parallelism and distribution to
sequential code, and the compiler emits the appropriate parallel code. OpenMP
suffers from the same problem as Midway, as customized preprocessor/compiler
must be built. It would be interesting to investigate whether OpenMP (or at
least, its subset) could be implemented using reflective features to indicate DSM
optimizations.

In perspective, with respect to the maintainability, customizability, and porta-
bility of DSM systems,

— Traditional page-based DSM systems must have OS-dependent code to trap
memory reference via a page fault. Also, overhead is known to be significant.

— Link-time DSM systems such as Shasta is efficient, but is platform and
processor-binary dependent.

— Class-based systems requires the user to insert appropriate read/write bar-
riers, and is thus error prone and/or only a certain set of classes can be
shared.

— Macros or ad-hoc preprocessor are hard to build and maintain, let alone
customize or be portable, and complete support of complex programming
languages such as C++ is difficult.

6 Conclusion and Future Work

We have described OMPC++, a portable and efficient DSM system implemented
using compile-time reflection. OMPC++ consists of a small set of OpenC++
2.5 metaclasses and template classes and is thus easy to customize and port to
different platforms. OMPC++ is a first step to realization of reflective framework
for portable and efficient support of various parallel programming models across
a wide variety of machines. Such characteristics are necessary as increasingly in
the days of network-wide computing, where a piece of code could be executed
anywhere in a diverse network.

OMPC++ was shown to be efficient for a set of basic as well as parallel
numerical kernel benchmarks on the RWC PC cluster platform.

As a future work, we are pursuing the following issues:

More comprehensive benchmarking The number of benchmarked programs,
processors, and comparative platforms, are still small. We are currently
conducting a set of comprehensive benchmarks by adding more SPLASH2
benchmarks (Water, Barnes), on larger platforms (64-processor RWCP clus-
ter and 64-processor Sparc Enterprise Server 10000), pitting against other
DSM platforms (developed at RWCP). We are also attempting alternative
algorithms, both for coherency and barriers. We will report the findings in
another paper after more analysis is done.

More efficient implementation Although OMPC++ went under some tun-
ing process, the read/write barriers and locks are still expensive. Although
in our preliminary benchmarks we are finding that OMPC++ is compet-
itive with other DSM implementations, we need to further enhance effi-
ciency. For example, Shasta only requires two instructions for barriers, much



smaller than ours, and employs various low-level optimization strategies
such as bunching multiple read-/write-accesses. Also, raw MPC++ Remote-
MemoryRead throughput is 40MByte/sec, whereas OMPC++ throughput is
23.5MByte/sec. This is due to address translation and table accesses. We
are considering altering the runtime data structures to further eliminate the
overhead.

Porting to other platforms OMPC++ currently is implemented on top of
MPC++ and RWC cluster. In order to port to different platforms, one must
alter the dependency on MPC++, if it is not available. In principle this
is simple to do, as one must only provide (1) threads, (2) remote memory
read/write, and (3) global barriers. This can be easily implemented using
MPI or other message passing platforms such as Illinois Fast Messages. Al-
ternatively one could make MPC++ to be more portable, which is our cur-
rent project in collaboration with RWC. In all cases, we must analyze and
exhibit the portability and efficiency of OMPC++ to validate that imple-
menting DSM systems with reflection is the right idea.

Other coherency protocols On related terms, we should support other co-
herency protocols, such as write-update, as well as weak coherency models
such as LRC and ALRC. The latter will fundamentally require changes to
the source code, and it would be interesting to investigate how much of this
simplified using open compilers.

Portable DSM on Java using OpenJIT Finally, we are planning to imple-
ment a Java version of DSM using OpenJIT, our reflective Java Just-In-Time
compiler. As of Feb. 1, 1999, We have almost completed the implementation
of OpenJIT, and will start our implementation as soon as OpenJIT is com-
plete.
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