
OpenJIT|A Reective Java JIT Compiler

| Short Version for the OOPSLA'98 Reection Workshop |

Satoshi Matsuoka

Tokyo Institute of Technology

and Japan Science and Technology Corporation

Hirotaka Ogawa

Tokyo Institute of Technology

Kouya Shimura, Yasunori Kimura

Fujitsu Laboratories

Koichiro Hotta

Fujitsu Limited

Hiromitsu Takagi

Electrotechnial Laboratory

September 30, 1998

Abstract

The so-called `Open Compilers' is a technique to incorporate various self-descriptive modules for
language customization and optimization based on computational reection. We apply the open
compiler technique to a Java Just-In-Time compiler to develop the OpenJIT compiler, which allows
class-speci�c customization and optimization, fostering research of new compilation techniques such
as application-speci�c customization and dynamic optimizations. Benchmarks with the current pro-
totype, which is almost entirely written in Java, have seen comparable benchmark results compared
to traditional C-based JIT compilers.

1 Introduction

Programming Languages which support features for high-degree of portability, such as Java, are becoming
increasingly important today. Such languages typically employ architecture and operating system in-
dependent bytecoded intermediate program representation, and utilized Just-In-Time compilers (JITs),
which compile parts of programs which require speedups into native code. However, compared to tra-
ditional compilers, JIT compilers lack the overall technical framework for its construction. As a result,
portability of the JIT compiler itself, as well as JIT-speci�c compilation issues, are not well-explored or
discussed.

For example, most optimization techniques in traditional compilers execution speed at the expense of
larger memory overhead. On the other hand, for most embedded applications, compilers must optimize
for resource e�ciency with moderate speedups. So most commercial JIT compilers today emphasize
speed, sacri�cing resource e�ciency, and there is no way to systematically change this emphasis. More
generally, in order to adapt a program to a speci�c computing environment, a compiler must perform (1)
optimizations that are suited to the particular execution environment, and (2) extend code generation
to accommodate for application and underlying platform requirements. However, all JIT compilers to
date are \black boxes" in that (1) they only perform general, speed-centric optimizations, and (2) have
no systematic means for introducing new code generators for language extensions and/or new features
of the underlying platforms.

We claim that the fundamental reasons for such shortcomings are that JITs today, although improv-
ing with respect to their standard compilation e�ciency, are constructed rather ad-hocly solely based on
traditional compiler technologies. Most JITs today are either written in C or in assembly language, and
have little concern for reuseability, portability (in an OO-framework sense), adaptability, i.e., software
engineering properties which a well-constructed software should all embody. Stanford's SUIT compiler[1]
is a `traditional' static compiler constructed as an OO-framework in order to serve as a basis of customiza-
tion for various compiler research. JITs, on the other hand, are not only boxes, but also their source
code, their internal architectural structures, and the compilation and runtime techniques they employ,

are seldom made open, and are thus hindering the progress of new area of exciting compiler research
based on dynamic compilation.

In order to resolve such a situation, we propose an open-ended JIT compiler called OpenJIT, which
is based on reection and open compiler technologies[2]. OpenJIT itself is mostly written as a Java class
framework, and allows on-the-y extensions to the JIT compilers with compiler extension classes. This
allows dynamic adaptation of the compilation process to various computing platforms and applications,
according to various cost tradeo�s and the properties of the underlying platform environment.

OpenJIT allows a given Java code to be even more portable with compiler customization; by contrast,
although there is a claimed portability story of Java as mentioned above, the portability of Java is
e�ective insofar as the capabilities and features provided by the JVM (Java Virtual Machine); thus, any
new features that has to be transparent from the Java source code, but which JVM does not provide,
could only be implemented via non-portable means. For example, if one wishes to write a portable
parallel application under multi-threaded, shared memory model, then some form of distributed shared
memory (DSM) would be required for execution under MPP and cluster platforms. However, JVM
itself does not facilitate any DSM functionalities, nor provide any software `hooks' for incorporating the
necessary read/write barriers for user-level DSM implementation. As a result, one must either modify
the JVM, or employ some ad-hoc preprocessor solution, neither of which are satisfactory in terms of
portability and/or performance. With OpenJIT, the DSM class library implementor can write a set of
compiler metaclasses so that necessary read/write barriers, etc., would be appropriately inserted into
critical parts of code.

Also, with OpenJIT, one could incorporate class-speci�c optimization which would apply e�ective
but costly optimization techniques in a pinpointed fashion to necessary parts of code. For example,
one could perform various numerical optimizations which have been well-studied in Fortran and C but
have not been well adopted into JITs for excessive runtime compilation cost, such as loop index analysis
and associated transformations. OpenJIT allows application of such optimizations to critical parts of
code in a pinpointed fashion, speci�ed by either the class-library builder, application writer, or the use
of the program. Furthermore, it allows optimizations that are too application and/or domain speci�c
to be incorporated as a general optimization technique for standard compilers. Open compilers would
allow e�ective construction of such customized compilers, and OpenJIT is no exception. For example,
it is reported by Kiczales et. al.[3] that, with open compilers, one could perform extensive loop fusions
by exploiting the various semantic equivalence relations between operators of visual image processing,
such as commutativity, allowing orders of magnitude speedups. OpenJIT will allow such transformation
to take place at the Java bytecode level instead of the source level as in [3], allowing higher-level of
portability even when source code is not available.

In this manner, OpenJIT allows a new style of programming for optimization and portability, in-
cluding portability of performance, compared to traditional JIT compilers, by providing separations of
concerns capabilities with respect to optimization and code-generation for new features. That is to say,
with traditional JIT compilers, a we see in the upper half of Figure 1, the JIT compilers would largely
be transparent from the user, and users would have to maintain code which might not be tangled to
achieve portability and performance. OpenJIT, on the other hand, will allow the users to write clean
code describing the base algorithm and features, and by selecting the appropriate compiler metaclasses,
or even by writing his own separately, one could achieve optimization while maintaining appropriate
separation of concern. Furthermore, compared to previous open compiler e�orts, OpenJIT could achieve
better portability and performance, as source code is not necessary, and late binding at run-time allows
exploitation of run-time values, as is with run-time code generators.

Although there have been reective compilers and OO compiler frameworks, because of being reective
and a run-time compiler, OpenJIT has some characteristic requirements and technical features that were
previously not seen in traditional JIT compilers. The latter section introduces the overview of OpenJIT,
and report on the �rst prototype and its performance evaluation.

2 OpenJIT|The Technical Issues

The full paper has more detailed discussions on the technical issues.

Standard JIT Compiler
- Ad-hoc construction
- Limited/overspec optim
- restricted portability

Native
Code
(exec)

Java
Classfile
(methods)

OpenJIT Compiler
- Reflective/OI
construction (JIT in Java)
- Flexible custom/optim
- high portability

Native
Code
(exec)

Java
Classfile
(methods

+
Compiler
metacode) Self-application

(compile)

Just-in-time JIT customization

Figure 1: Comparison of Traditional JITs and OpenJIT

As OpenJIT is a reective system, it is constructed as a class framework written in Java. As a result,
it embodies several technical issues that otherwise would not occur for C-based JIT compilers.

1. Self-Compilation of the JIT Compiler

As most of OpenJIT is written in Java, the bytecode of OpenJIT will be initially interpreted by the JVM,
and gradually become compiled for faster, optimized execution. Although this allows the JIT compiler
itself to adapt the particular execution environment the JIT optimizes for, it could possibly give rise to
the following set of problems:

� Performance of the JIT compiler: Various speed overhead, including that it is written in Java.

� Lack of appropriate API for Java-written JIT compilers in JVM: JVM does not have APIs for
reective JIT compilers.

� Various Problems with self-modifying code: Especially since Java is multithreaded.

2.Modi�cation of the Compiler during Execution :

OpenJIT will allow run-time integration of Java components which will extend and/or modify the JIT
compiler at runtime. Since these will be class�les automatically downloaded into JVM, and will be part
of a prefabricated optimization metaclasses, an end-user will not have to do his own hacking of the JIT
compiler. Still, it could set raise the following set of problems:

� Restrictions to self-modi�cation: Appropriate scope control[10] would be necessary.

� Compiler safety: Must be controlled via an authentication mechanism

� Compiler API: Must be designed to allow dynamic compiler customization

3 Overview of the OpenJIT Architecture

OpenJIT overall is written mostly in Java, and there are also a small JNI stubs for JVM introspection,
plus some C-level runtime routines.

The OpenJIT architecture is largely divided into the frontend and the backend processors. The
frontend takes the Java bytecodes as input, performs higher-level optimizations involving source-to-
source transformations, and passes on the intermediate code to the backend, or outputs the transformed
bytecode. The backend is e�ectively a small JIT compiler in itself, and takes either the bytecode or the
intermediate code from the frontend as input, performs lower-level optimizations including transformation
to register code, and outputs the native code for direct execution. The reason why there is a separate
frontend and the backend is largely due to modularity and ease of development. In particular, we strive
for the possibility of the two modules being able to run as independent components.

Below, we describe the OpenJIT frontend and the backend in detail.

3.1 OpenJIT Frontend System

The OpenJIT will be invoked just as a standard Java JIT compiler would, using the standard JIT API on
each method invocation. Upon invocation, the OpenJIT frontend processes the bytecode of the method
in the following way: The discompiler recovers the AST of the original Java source from the bytecode,
by recreating the control-ow graph of the source program. At the same time, the annotation analysis
module will obtain any annotating info on the class �le, which will be recorded as attribute info on the
AST.

Next, the obtained AST will be subject to optimization by the (higher-level) optimization module.
Based on the AST and control-ow information, we compute the data & control dependency graphs, etc.,
and perform program transformation in a standard way with modules such as owgraph construction
module, program analysis module, and program transformation module. The result from the OpenJIT
frontend will be a new bytecode stream, which would be output to a �le for later usage, or an intermediate
representation to be used directly by the OpenJIT backend. The OpenJIT backend, in turn, performs
further low-level optimizations, and outputs the corresponding native code.

3.2 OpenJIT Backend System

The OpenJIT backend system performs lower-level optimization over the output from the frontend
system, and generates native code. The OpenJIT Native Code Transformer provides the overall abstract
framework for backend execution, and de�nes the class framework APIs for backend modules which could
be rede�ned with compiler metaclasses.

Firstly, the low-level IL translator analyzes and translates the bytecode instruction streams to low-
level intermediate code representation using stacks. Then, the RTL Translator translates the stack-based
code to intermediate code using registers (RTL). Here, the bytecode is analyzed to divide the instruction
stream into basic blocks. Then, the peephole optimizer would eliminate redundant instructions from
the RTL instruction stream, and �nally, the native code generator would generate the target code of
the CPU. Currently, OpenJIT supports the SPARC processor as the target, but could be easily ported
to other machines. The generated native code will be then invoked by the Java VM, upon which the
OpenJIT runtime module could be called in a supplemental way.

4 OpenJIT Current Status and Preliminary Performance Eval-

uation

Currently, The Proof-of-concept prototype OpenJIT backend system is functional. It is based on Fujitsu's
commercial C-based JIT compiler (FJIT). We ported the program while modifying it so that the program
would be more object-oriented. Although the prototype is relatively small (approximately 5000 lines of
Java code), it is stable and also fast, being able to run microbenchmarks such as Ca�eineMark 3.0, as well
as larger tools such as javac and even HotJava. When one wants to use OpenJIT as his JIT compiler,
after downloading OpenJIT in the JDK 1.1.X environment, one would set the following environment
variables.

% setenv JAVA_COMPILER OpenJIT

% setenv CLASSPATH <dir>

Figure 2: OpenJIT Javac Benchmark

% setenv LD_LIBRARY_PATH <dir>

This will set the appropriate paths for OpenJIT class�les, and the C stub routines as well as the
runtime routine (libOpenJIT.so). Thereon, OpenJIT will be transparent to the user|one would invoke
a Java program in a standard way, and JIT compilation would take place as expected. Although there
is limited scope control for the current version, the default is for the OpenJIT compilers to be compiled
initially, after which the user bytecode will be compiled.

We performed several benchmarks on the prototype OpenJIT backend. Al benchmarks were executed
under Sun UltraSparc-II 247Mhz, Solaris 2.6, JDK 1.1.6 environment. Although we have performed
several benchmarks, such as Ca�eineMark[12] and Nullprogram, we will introduce just one benchmark
for brevity. More detailed benchmarks will be found in the full version of the paper.

The Javac benchmark is a more realistic benchmark compared to Ca�eineMark. More speci�cally, we
measure the time it takes to compile javac in javac. Because javac is I/O intensive and involve signi�cant
number of native method calls, JITs are known to be less e�ective.

The Graph in Figure 2 show the results of JVM interpreter, Sun's JIT for JDK， FJIT, and OpenJIT.
JIT performances are almost all equivalent, and are twice as fast as interpretation. We can see that, for
practical programs OpenJIT is comparable in performance against C-based JIT compilers.

The benchmarks we have performed so far have thus shown that, for moderately-sized practical
programs, the current OpenJIT prototype exhibits similar performance to C-based JITs, verifying the
viability of our approach of self-descriptive dynamic JIT. On the other hand, OpenJIT Frontend is still
under design, and the backend also needs to be redesigned from the prototype to allow more �ne-grained
customizability. In particular, the high-level optimizations in the frontend is fundamentally the same as
what are being done with traditional, static compilers; thus, in subsequent releases, the major research
issue is how to strike the balance between execution time and memory consumption versus the bene�ts
of sophisticated optimizations.

Then, OpenJIT can enjoy the bene�ts of both the traditional self-descriptive interpreter-based reec-
tion, where elimination of (true) interpreter overhead is still di�cult, and open compilers, where there
is no interpretation overhead but lacks dynamic customizability.

5 Conclusion

We introduced OpenJIT, a JIT based on Open Compiler/Reection techniques. Although OpenJIT
is still under development, the current proof-of-concept prototype has shown competitive performance
to C-based JIT compilers, and its code is much smaller and easier to understand. We are developing
a framework-based APIs using various design patterns so that it could be easily customized, and that
multiple customized compilers could co-exist for compilation of a single program. We hope that OpenJIT
will serve as a basis for various interesting research on dynamic compilation techniques, and as such it
will be made public when completed. Details will be posted on

Acknowledgment

OpenJIT is being developed under the contract with Information Promotion Agency of Japan, titled
\Research and Development of Open-ended Just-in-Time Compiler OpenJIT for Java based on Reec-
tion".

References

[1] The Stanford SUIF Compiler Group: SUIF Compiler System, http://suif.stanford.edu

[2] John Lamping, Gregor Kiczales, Luis Rodriguez, and Erik Ruf: An architecture for an open compiler, In
Proceedings of IMSA'92: Reection and Meta-Level Architecture, pp. 95{106, Tokyo, Nov. 1992.

[3] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc Lo-
ingtier and John Irwin: Aspect-Oriented Programming, In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP'97), Finland. Springer LNCS 1241 June 1997.

[4] Luis Rodriguez, Jr.: A study on the viability of a production-quality metaobject protocol-based statically
parallelizing compiler, In Proceedings of IMSA'92: Reection and Meta-Level Architecture, pp. 107{112,
Tokyo, Nov. 1992.

[5] Yutaka Ishikawa et. al.: Design and Implementation of Metalevel Architecture in C++ {MPC++ Approach{.
In Proceedings of Reection'96, pp.141{154, San Francisco, 1996.

[6] Shigeru Chiba: A Metaobject Protocol for C++. In Proceedings of ACM OOPSLA'95, pp. 285{299., Oct.
1995.

[7] Hidehiko Masuhara, Satoshi Matsuoka, Kenichi Asai, and Akinori Yonezawa: Compiling Away the Meta-
Level in Object-Oriented Concurrent Reective Languages using Partial Evaluation. In Proceedings of ACM
OOPSLA'95, pp. 300{315., Oct. 1995.

[8] Yuuji Ichisugi and Yves Roudier: The Extensible Java Preprocessor Kit and a Tiny Data Parallel Java. In
Proceedings of ISCOPE'97, Springer LNCS 1343, pp. 153{160, Marina Del Rey, CA, 1997.

[9] E. Volarschi, C. Consel, and C. Cowan: Declarative Specialization of Object-Oriented Programs. In Proc.
ACM OOPSLA, pp. 286-300, 1997.

[10] Gregor Kiczales, Jim des Rivi�eres and Daniel G. Bobrow. \The Art of the Metaobject Protocol", The MIT
Press, Cambridge, MA, 1991.

[11] Kouya Shimua and Yasunori Kimura: Prototyping of a Java JIT Compiler (Java JIT Compiler no Shi-saku).
IPSJ{SIGARC Workshop Proceedings, 96-ARC-120, pp.37{42, Dec., 1996 (In Japanese).

[12] Pendragon Software: The Ca�eineMark 3.0 Benchmark, http://www.pendragon-software.com/pendragon/
cm3/index.html.

