OpendIT Backend Compiler

OpendI T Backend Compiler

Kouya SHIMURA
June 29, 1998

E-Mail: kouya@flab.fujitsu.co.jp
Computer Systems L ab.
FUJITSU LABORATORIESLTD.

FUJITSU LABORATORIESLTD. 1

OpendIT Backend Compiler

1 Introduction

This document describes the overview and implementation of OpendIT Backend Com-
piler.
This document covers the following:

o Goalsof our project
o Implementation Overview
o Internal Specification

e Preliminary Results

2 Goalsof our project

These are the goals for OpenJI T Backend System.

2.1 Target Environment

OpendI T compiler isbased on Sun’s JDK version 1.1.X. Our target machineisaSPARC
version 8 computer running Solaris 2.5 or later. Our codeisamost writtenin java. Few
code is written in C language for access to the structures inside of JDK and managing
native code memory area.

2.2 Small Code Size

JVM has some complex instructions. In order to reduce compiled code size, these
instructions are not inlined and tranglated to instruction sequence of runtime routine
cal.

2.3 Selectable Compiled M ethods

A user can specify which methods should be compiled. It is specified by aenvironment
variable beforeinvoking Java. Classes and packages being compiled are also specified.
Uncompiled methods are interpreted by JDK.

24 No Maodificationsto JDK

We doesn’'t modify Sun’s JDK to integrate the JIT compiler. This will make porting to
new versions of Sun's JDK faster and easier.

FUJITSU LABORATORIESLTD. 2

OpendIT Backend Compiler

3 Implementation Overview

3.1 Integratinginto JDK

Sun’'s JDK 1.1.X has the Java Native Code API. This is intended for a programmer
to write native code generators inside the JVM. Using this API, we made success to
integrate OpendIT compiler into Sun's JDK without modification of JDK. OpendI T-
compiler is attached to VM at runtime as one of dynamic link libraries.

3.2 Compilation Timing

In OpendI T compiler, The unit of compilationisamethod. When aclassisloaded, each
invoker of methods included in that class is hooked to compile it. When the method
is invoked, OpendI T compiler starts to work. After finishing to compile the method,
compiler jumpsto entry of the compiled method. If the compilation is failed for some
reason —memory full, illegal bytecode, etc, such amethod is interpreted by JDK.

3.3 Compiled Code Area

Compiled code areaislocated at high address on memory and expanded upward. This
areaisallocated by mmap system call. Once a method is compiled, the compiled code
are spooled on memory and reused. In current our implementation, this area never be
freed. Managing compiled code areais one of our problems.

4 Internal Specification

4.1 Diagram of compiling flow

The following diagram shows the overall structure of the JIT compiler.

(Bytecode)

IL translator I
Intermediate L anguage
Dataflow analyzer I
Intermediate L anguage
Ogti mizer I
Intermediate L anguage
Code generator I

(Native code)

IL trandlator: Trandate the bytecode into IL(Inermediate Language). One VM in-
struction is expanded to severa L instructions.

FUJITSU LABORATORIESLTD. 3

OpendIT Backend Compiler

Data flow analyzer: Analyzestack depth and verify the bytecode briefly. Moreover it
determines operands data type in some instructions such as dup, dup2, etc.

Optimizer: Eliminate redundant instructions.

Code generator: Trandlate IL to native code.

4.2 Intermediate Language

The following is an instruction set of our intermediate language. Each instruction has
3 operands and each operands has data type tag. It has only 36 instructions and it will
be portable to other hardware architectures.

nop branch call return tblsw ret
nove add addcc addx and | d
| dsh | dsb | duh | dd or div
sl | mul sra srl st stb
sth sub subcc subx xor i 2f
i 2d f2i d2i f2d d2f f neg

4.3 Optimization

OpendIT compiler transform a sequence of bytecode to native code using simple opti-
mization techniques. OpendI T compiler uses the following two techniques.

¢ Register allocation
Allocate operand stack and local variables to registers

o Peephole optimization
Eliminate redundant instructions caused by register allocation

4.3.1 Exampleof register allocation

The following code is executing “a=b+c”. Thefirst column shows JVM’s bytecode.
The second column shows the naive code using stack. After alocating stack operands
to registers, the code becomes like the third column. Some instructions loading from
the stack or storing to the stack can be removed. Furthermore variables are allocated
to registers, the code would be like the last column. Thelast code doesn't include any
load and store instructions and can run faster.

FUJITSU LABORATORIESLTD. 4

OpendIT Backend Compiler

s N

bytecode naive code allocate stack allocate vars

iload.1 - ld[varst0],%r1 - Id[varst0],%r1 - mov %l1,%rl
st %r1,[optop+0]

!

iload_2 - ld[varst4],%rl - Id[varst+4],%r2
st %r1,[optop+4]

mov %l2,%r2

iadd - Id [optop+0],%r1l - add %rl1,%r2,%rl - add %rl,%r2,%r1
Id [optop+4],%r2
add %r1,%r2,%r3
st %r3,[optop+0]

istore 3 - |d[optop+0],%r1 - st%rl,[varst8] - mov %r1,%I3
st %rl,[varst+8|
N J

4.3.2 Example of peephole optimization

Thefollowing codeisexecuting “a=b+100". Thefirst column shows JVM’sbytecode.
The second column shows the code after register alocation optimization. Instructions
of SPARC can handleimmediate value(signed 13 bit) and the code can be trandlated to
the third one. Moreover register transferring instructions are redundant and the code is
finally trandated to only one instruction at the last column.

But these peephol e optimization can be only applied within basic block.

e ™
bytecode reg aloc remove const remove redundancy
iload.1 - mov %l1,%r1 - mov %I1,%r1 B e
[dc 100 - mov 100,%r2 B . B e
iadd - add %r1,%r2,%r1 - add %r1,100,%r1 - add %l1,100,%I2
istore.2 — mov %r1,%I2 - mov %r1,%lI2 e

N J

4.3.3 Implementation of constant pool resolution

OpendI T compiler compilesamethod before execution and some part of compiled code
possibly never be executed. In order to improve performance to execute constant pool
resolution, OpendI T compiler generates self-modifying code. At the compiling time,
it generates calling sequence for resolver routine. When resolver is called, resolver
routine overwrites caller code with code that executes setting address to a register.

FUJITSU LABORATORIESLTD. 5

OpendIT Backend Compiler

The following figure shows an example of “i nvokest ati ¢ #12”. Inthis case, the
address ad is apointer to method block and it is passed toi nvokest at i ¢ routine.

cal |l resol veMet hod ™~ sethi %i (ad), %0

move 12, %00 or %0, % o(ad), %0
call invokestatic call invokestatic
add %7, 4, %1 add %7,4, %1

There is a problem that self-modifying code in a hardware can be costly, because
it may require flushing the pipelines, instruction caches and so on. On the other hand,
flushing will occur only once for each constant pool resolution used in a program. For
constant pool resolution in loops, the flush cost is negligible if the loop iterates many
times.

44 JIT Runtimeroutines

The following is the list of IVM’sinstructions using J'T runtime routines. _quick in-
structions are omitted but _quick variants are also included.

anewar r ay athrow checkcast d2l
dcmpg dcempl drem f2l
fcmpg fempl frem instanceof
invokeinterface | invokenonvirtual | invokestatic | invokevirtual
l2d [2f lcmp [div
Imul [rem Ishi Ishr
lushr monitorEnter monitorExit | multianewarray
newarray newobject
All the other stuff of JIT runtime routines are listed bel ow.
| function name | description |
arrayCheck check array boundary
resol ved ass foranewar ray, nul ti anewarr ay,
checkcast,i nst anceof
resol veFi el d forputfield,getfield
resol veMet hod for invoking method
resol veNew for new
resol veStaticField | forputstatic,getstatic
resol veString forl dc

4.5 Exception handling

In spite of rarely exception happening, so much code for detecting exception have to
be buried in compiled code that it make disadvantage of time and space. To avoid this,
we use UNIX signal handling mechanism. The following two exceptions is caught by
OS and handled.

FUJITSU LABORATORIESLTD. 6

OpendIT Backend Compiler

¢ NullPointerException
o ArithmeticException(/ by zero)

For all other exceptions, it can be detected inside of compiled code or runtime
routines and thrown to appropriate exception handler.

We made much effort to implement exception handling routine because it requires
restoring context of processor. System call setjmp and longjmp on UNIX are easy
to use for such purpose but too many setjmp call have to be buried in compiled code.
Besides, when a synchronized method might be skipped by exception, monitor for syn-
chronization have to be unlocked. Therefore we wrote very tricky exception handling
routine in assembler.

5 Préiminary Results

For JDK’s interpreter(no JT) and Sun's JT compiler (sunwjit), Fujitsu's JIT com-
piler written in C(fjit), and OpendI T, we measured the performance. The machine we
used for evaluation is Sun Ultraworkstation(UltraSPARC-I1 247MHz, memory: 1GB,
OS:Solaris 2.6).

5.1 Speedupsof javac
The following graph shows the CPU time to compile javac (Java compiler) itself.

interperter

sunwjit

fjit

OpendI T

I | | | |
0O 10 20 30 40 50 60 70 80 9 100 110 120 130 sec

5.2 Sizeof compiled code

We used javac to measure the size of compiled code. Additionally we also measure
the number of instructionsfor bytecode and compiled code since the unit of instruction
word is different. The result was further smaller than we expected.

| | codesize |

bytecode 143KB (1.0)
native code | 488KB(3.41)

FUJITSU LABORATORIESLTD. 7

