
OpenJIT Backend Compiler

OpenJIT Backend Compiler

Kouya SHIMURA

June 29, 1998

E-Mail: kouya@flab.fujitsu.co.jp
Computer Systems Lab.

FUJITSU LABORATORIES LTD.

FUJITSU LABORATORIES LTD. 1

OpenJIT Backend Compiler

1 Introduction

This document describes the overview and implementation of OpenJIT Backend Com-
piler.

This document covers the following:

� Goals of our project

� Implementation Overview

� Internal Specification

� Preliminary Results

2 Goals of our project

These are the goals for OpenJIT Backend System.

2.1 Target Environment

OpenJIT compiler is based on Sun’s JDK version 1.1.X. Our target machine is a SPARC
version 8 computer running Solaris 2.5 or later. Our code is almost written in java. Few
code is written in C language for access to the structures inside of JDK and managing
native code memory area.

2.2 Small Code Size

JVM has some complex instructions. In order to reduce compiled code size, these
instructions are not inlined and translated to instruction sequence of runtime routine
call.

2.3 Selectable Compiled Methods

A user can specify which methods should be compiled. It is specified by a environment
variable before invoking Java. Classes and packages being compiled are also specified.
Uncompiled methods are interpreted by JDK.

2.4 No Modifications to JDK

We doesn’t modify Sun’s JDK to integrate the JIT compiler. This will make porting to
new versions of Sun’s JDK faster and easier.

FUJITSU LABORATORIES LTD. 2

OpenJIT Backend Compiler

3 Implementation Overview

3.1 Integrating into JDK

Sun’s JDK 1.1.X has the Java Native Code API. This is intended for a programmer
to write native code generators inside the JVM. Using this API, we made success to
integrate OpenJIT compiler into Sun’s JDK without modification of JDK. OpenJIT-
compiler is attached to JVM at runtime as one of dynamic link libraries.

3.2 Compilation Timing

In OpenJIT compiler, The unit of compilation is a method. When a class is loaded, each
invoker of methods included in that class is hooked to compile it. When the method
is invoked, OpenJIT compiler starts to work. After finishing to compile the method,
compiler jumps to entry of the compiled method. If the compilation is failed for some
reason – memory full, illegal bytecode, etc, such a method is interpreted by JDK.

3.3 Compiled Code Area

Compiled code area is located at high address on memory and expanded upward. This
area is allocated by mmap system call. Once a method is compiled, the compiled code
are spooled on memory and reused. In current our implementation, this area never be
freed. Managing compiled code area is one of our problems.

4 Internal Specification

4.1 Diagram of compiling flow

The following diagram shows the overall structure of the JIT compiler.

Bytecode

Intermediate Language

Optimizer

IL translator

Data flow analyzer

Intermediate Language

Intermediate Language

Native code

Code generator

IL translator: Translate the bytecode into IL(Inermediate Language). One JVM in-
struction is expanded to several IL instructions.

FUJITSU LABORATORIES LTD. 3

OpenJIT Backend Compiler

Data flow analyzer: Analyze stack depth and verify the bytecode briefly. Moreover it
determines operands data type in some instructions such as dup, dup2, etc.

Optimizer: Eliminate redundant instructions.

Code generator: Translate IL to native code.

4.2 Intermediate Language

The following is an instruction set of our intermediate language. Each instruction has
3 operands and each operands has data type tag. It has only 36 instructions and it will
be portable to other hardware architectures.

nop branch call return tblsw ret
move add addcc addx and ld
ldsh ldsb lduh ldd or div
sll mul sra srl st stb
sth sub subcc subx xor i2f
i2d f2i d2i f2d d2f fneg

4.3 Optimization

OpenJIT compiler transform a sequence of bytecode to native code using simple opti-
mization techniques. OpenJIT compiler uses the following two techniques.

� Register allocation

Allocate operand stack and local variables to registers

� Peephole optimization

Eliminate redundant instructions caused by register allocation

4.3.1 Example of register allocation

The following code is executing “a=b+c”. The first column shows JVM’s bytecode.
The second column shows the naive code using stack. After allocating stack operands
to registers, the code becomes like the third column. Some instructions loading from
the stack or storing to the stack can be removed. Furthermore variables are allocated
to registers, the code would be like the last column. The last code doesn’t include any
load and store instructions and can run faster.

FUJITSU LABORATORIES LTD. 4

OpenJIT Backend Compiler

� �

bytecode naive code allocate stack allocate vars
/* push var 1 on stack */
iload 1 → ld [vars+0],%r1 → ld [vars+0],%r1 → mov %l1,%r1

st %r1,[optop+0]
/* push var 2 on stack */
iload 2 → ld [vars+4],%r1 → ld [vars+4],%r2 → mov %l2,%r2

st %r1,[optop+4]
/* add top 2 entries and push the result */
iadd → ld [optop+0],%r1 → add %r1,%r2,%r1 → add %r1,%r2,%r1

ld [optop+4],%r2
add %r1,%r2,%r3
st %r3,[optop+0]

/* pop a value and write it into var 3 */
istore 3 → ld [optop+0],%r1 → st %r1,[vars+8] → mov %r1,%l3

st %r1,[vars+8]
� �

4.3.2 Example of peephole optimization

The following code is executing “a=b+100”. The first column shows JVM’s bytecode.
The second column shows the code after register allocation optimization. Instructions
of SPARC can handle immediate value(signed 13 bit) and the code can be translated to
the third one. Moreover register transferring instructions are redundant and the code is
finally translated to only one instruction at the last column.

But these peephole optimization can be only applied within basic block.
� �

bytecode reg alloc remove const remove redundancy
/* push var 1 on stack */
iload 1 → mov %l1,%r1 → mov %l1,%r1 → : : : : : : : : : : : : : : :

/* push constant 100 on stack */
ldc 100 → mov 100,%r2 → : : : : : : : : : : : : : : : → : : : : : : : : : : : : : : :

/* add top 2 entries and push the result */
iadd → add %r1,%r2,%r1 → add %r1,100,%r1 → add %l1,100,%l2
/* pop a value and write it into var 2 */
istore 2 → mov %r1,%l2 → mov %r1,%l2 → : : : : : : : : : : : : : : :

� �

4.3.3 Implementation of constant pool resolution

OpenJIT compiler compiles a method before execution and some part of compiled code
possibly never be executed. In order to improve performance to execute constant pool
resolution, OpenJIT compiler generates self-modifying code. At the compiling time,
it generates calling sequence for resolver routine. When resolver is called, resolver
routine overwrites caller code with code that executes setting address to a register.

FUJITSU LABORATORIES LTD. 5

OpenJIT Backend Compiler

The following figure shows an example of “invokestatic #12”. In this case, the
address ad is a pointer to method block and it is passed to invokestatic routine.

call resolveMethod
move 12,%o0
call invokestatic
add %l7,4,%o1

.
.
.

.
.
.

sethi %hi(ad),%o0
or %o0,%lo(ad),%o0
call invokestatic
add %l7,4,%o1

.
.
.

.
.
.

self-modifying

There is a problem that self-modifying code in a hardware can be costly, because
it may require flushing the pipelines, instruction caches and so on. On the other hand,
flushing will occur only once for each constant pool resolution used in a program. For
constant pool resolution in loops, the flush cost is negligible if the loop iterates many
times.

4.4 JIT Runtime routines

The following is the list of JVM’s instructions using JIT runtime routines. quick in-
structions are omitted but quick variants are also included.

anewarray athrow checkcast d2l
dcmpg dcmpl drem f2l
fcmpg fcmpl frem instanceof
invokeinterface invokenonvirtual invokestatic invokevirtual
l2d l2f lcmp ldiv
lmul lrem lshl lshr
lushr monitorEnter monitorExit multianewarray
newarray newobject

All the other stuff of JIT runtime routines are listed below.

function name description

arrayCheck check array boundary
resolveClass for anewarray, multianewarray,

checkcast, instanceof
resolveField for putfield, getfield
resolveMethod for invoking method
resolveNew for new
resolveStaticField for putstatic, getstatic
resolveString for ldc

4.5 Exception handling

In spite of rarely exception happening, so much code for detecting exception have to
be buried in compiled code that it make disadvantage of time and space. To avoid this,
we use UNIX signal handling mechanism. The following two exceptions is caught by
OS and handled.

FUJITSU LABORATORIES LTD. 6

OpenJIT Backend Compiler

� NullPointerException

� ArithmeticException(/ by zero)

For all other exceptions, it can be detected inside of compiled code or runtime
routines and thrown to appropriate exception handler.

We made much effort to implement exception handling routine because it requires
restoring context of processor. System call setjmp and longjmp on UNIX are easy
to use for such purpose but too many setjmp call have to be buried in compiled code.
Besides, when a synchronized method might be skipped by exception, monitor for syn-
chronization have to be unlocked. Therefore we wrote very tricky exception handling
routine in assembler.

5 Preliminary Results

For JDK’s interpreter(no JIT) and Sun’s JIT compiler (sunwjit), Fujitsu’s JIT com-
piler written in C(fjit), and OpenJIT, we measured the performance. The machine we
used for evaluation is Sun Ultra workstation(UltraSPARC-II 247MHz, memory: 1GB,
OS:Solaris 2.6).

5.1 Speedups of javac

The following graph shows the CPU time to compile javac (Java compiler) itself.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

interperter

sunwjit

fjit

OpenJIT

sec

5.2 Size of compiled code

We used javac to measure the size of compiled code. Additionally we also measure
the number of instructions for bytecode and compiled code since the unit of instruction
word is different. The result was further smaller than we expected.

code size

bytecode 143KB (1.0)
native code 488KB(3.41)

FUJITSU LABORATORIES LTD. 7

