Experiences with OpenORB’s Compositional Meta-Model and Groups of

Components

Katia B. Saikoski* and Geoff Coulson
Distributed Multimedia Research Group,
Department of Computing, Lancaster University,
{saikoski,geoff}@comp.lancs.ac.uk

1 Introduction

The group abstraction is a crucial element in the support
provided by middleware platforms. Application areas such
as CSCW, dependable systems or media dissemination can
take advantage of groups to facilitate the communication and
management of the several end-points participating in the
application. Although there have been proposals for the pro-
vision of groups in CORBA and other middleware platforms
(e.g., Electra [7], Eternal [9], OGS [6], JGroup [8]), there re-
mains an unsatisfied demand for a more comprehensive group
support in order to address the following requirements:

(a) Groups should equally accommodate the requirements of
the variety of emerging distributed applications. For ex-
ample, an application that manages the dissemination of
audio over the Internet is different in nature from an ap-
plication that controls a set of replicated servers. While
the former involves the distribution of audio from one
producer to a number of receivers, the latter manages the
transparent access of clients to a set of servers. Addition-
ally, the requirements associated to the communication
(reliability, ordering, etc) also vary.

(b) Groups should also address the dynamic requirements
of distributed applications by providing run-time adap-
tation. Changes in application requirements occur be-
cause the environment changes (e.g., a mobile user fac-
ing network problems) or because the application needs
to evolve (e.g., a software module needs to be updated).
Because a number of applications cannot be stopped ei-
ther because they are essential applications (e.g., traf-
fic control systems, life support systems) or because the
changes occur very frequently (e.g., users connecting and
disconnecting from the Internet, network fluctuations), it
is essential that run-time adaptation be provided.

*PhD Student sponsored by CAPES and PUCRS, Brazil.

We address these issues in the context of the OpenORB
project [3], the aim of which is to provide a highly flexible
middleware architecture based on reflective component tech-
nology. Component technology brings the possibility of creat-
ing particular instances of the middleware tailored for specific
purposes, while reflection provides a suitable mechanism to
uniformly handle adaptation.

In this paper, we present the experiments in the use of the
OpenORB reflective middleware to address groups of com-
ponents. The Group support for OpenORB (GOORB) plat-
form is an OpenORB instance targeted at the development
of group services. Its main objective is to provide a flexible
infrastructure for the creation of group services and groups
that can be tailored to meet application needs. At design
and start up time, flexibility is provided through component
configuration, which allows group services and groups to be
built by assembling software components shaped to a specific
use. At run-time, flexibility is provided by means of dynamic
adaptation, which enables group services and groups to adjust
themselves to new requirements.

2 The OpenORB basics

As mentioned above, OpenORB [2, 5] is built according to
a component-based architecture. At load-time, components
are selected and appropriately composed to create specific in-
stances of the middleware. In addition, components can be
loaded into capsules at run-time. Reflection is used to facili-
tate the change and reconfiguration of the set of components
in a capsule at run-time, and thus dynamically adapt the
middleware functionality.

OpenORB incorporates the following characteristics. Com-
ponent interfaces are specified in (an extended version of)
the CORBA Interface Definition Language (IDL), and com-
ponents may export any number of interface types. RM-ODP
compatible signal and stream interaction types are supported
for events and continuous media. As well, each interface takes

{saikoski,geoff}@comp.lancs.ac.uk

one of two possible roles: provided (services the component
offers) or required (services the component requires).

Communication between the interfaces of different compo-
nents can only take place if the interfaces have been either
explicitly or implicitly bound. In terms of role, required inter-
faces can only be bound to provided interfaces and vice versa.
To-be-bound interfaces must also match in terms of their in-
teraction types (i.e. method signatures etc.). Crucially, bind-
ings between interfaces are themselves components. There are
two categories of binding component: local bindings and dis-
tributed bindings. The former, which are simple and primitive
in nature, are used only where the to-be-bound interfaces re-
side in the same address space (capsule). Distributed bindings
are themselves composite and distributed components which
may span capsule or machine boundaries. Internally, these
bindings are composed of sub-components (bound by means
of local bindings or, recursively, by lower-level distributed
bindings) that represent various aspects of the communica-
tions system. Examples are primitive transport level connec-
tions (e.g., a “multicast IP binding”), media filters, stubs,
skeletons etc. Distributed bindings are often constructed in a
hierarchical (nested) manner; for example a “video binding”
may be created by encapsulating a configuration consisting
of a “primitive” multicast IP binding augmented with H.263
filter components.

A representation of these concepts can be seen in Figure

capsule capsule

distributed composite
component

distributed
primitive
binding

local binding

local bindings

Figure 1: The OpenORB Basics.

In terms of reflection, every OpenORB component has an
associated meta-space, which is accessible from any of the
component’s interfaces, and which provides reflective access
to, and control of, the component in various ways. To help
separate concerns, meta-space is partitioned into various or-
thogonal meta-models. In this paper, we focus exclusively
on the compositional meta-model which gives access to the
internal representation of composite components.

3 GOORB’s Compositional Meta-
Model

The structure of a composite component in OpenORB is rep-
resented by the compositional meta-model, which takes the
form of a component graph data structure. This serves as a
causally connected self-representation of a composite compo-
nent’s internal structure, and therefore, manipulations of the
component graph’s topology result in corresponding changes
in the component’s composition.

The meta-object protocol (MOP) for the compositional
meta-model was initially proposed in [4], then refined in [5]
and finally restructured in [3]. In this paper, we discuss an
implementation of the compositional meta-model based on
the MOPs mentioned and its use for manipulating groups of
distributed components.

GOORB?’s ICompositional M OP interface provides methods
for manipulating a composite component through its meta-
object. Figure 2 presents part of the IDL specification for
that interface.

Listing 1: IDL for the ICompositional MOP interface.

// CORBA IDL
interface ICompositionalMOP {
ComponentGraph getGraph ();
CompList getComponents ();
EdgeList getLocalBinds ();
IfaceList getExternal ();
void addIfaceExternal (out IfaceName extiface,
in ComplID comp,
in IfaceName iface)
raises (CompNotInGraph, IfaceNotInComp);
void dellfaceExternal (out IfacelD)
raises (IfaceNotInComp);
void addComponent (in NewComp newcomp,
in Position position,
in IfaceList extifaces)
raises (InvalidPosition, Danglinglnterface);
void delComponent (in CompID delcomp,
in EdgeList mapping)
raises (CompNotInGraph, InconsistentMapping);
void replaceComponent (in CompID oldcomp,
in NewComp newcomp)
raises (CompNotInGraph, CompsNotCompatible);
void localBind (in IfaceID ifacel,
in IfaceID iface2)
raises (NotBindable);
void breakLocalBind (in IfaceID ifacel,
in IfacelD iface2)
raises (LocalBindNotInComp);

}s

As can be seen in Listing [I} the ICompositionalMOP in-
terface provides a number of methods for inspecting and per-
forming adaptation on a composite object. In more details,
the methods for inspection are getGraph(), getComponents(),
getLocalBinds() and getExternal() and the methods for adap-
tation are addComponent(), delComponent(), replaceCom-
ponent(), addIfaceExternal(), dellfaceExternal(), breakLocal-
Bind() and localBind(). The methods for inspecting a com-
posite component return the current configuration of that
component. The getGraph() method returns the represen-

tation of the graph that describes the structure of a compos-
ite component. The getComponents() method returns a list
of component identifiers for the components that compose a
composite component. The getLocalBindings() method re-
turns a list of local bindings in a composite component in
the form of a pair interface identifiers. Finally, the getExter-
nal() method returns a list of interface identifiers for the in-
terfaces external to the composite component. The methods
for adapting a composite component allow the insertion, dele-
tion and replacement of components in the graph. Besides,
local bindings between components and external interfaces
can also be destroyed or created.

Using the ICompositional MOP interface, adaptation can be
performed in several ways. For example, the addComponent()
method can be used to add a component and unbind/bind the
necessary interfaces (using the position and extifaces param-
eters) or it can be used in conjunction with breakLocalBind()
and localBind() methods to explicitly control the rearrange-
ment of the graph. In this case, the position and eztifaces
parameters are left empty.

4 A Model for Distributed Reconfig-
uration

In order to perform adaptation in a distributed manner,
we propose the following infrastructure. Each OpenORB
address space (capsule) has an associated runtime envi-
ronment to support adaptation. This is composed of an
Adaptation Manager component and an Adaptation Data
component. Besides, remote requests for adaptation are is-
sued by Remote Adaptor components, which act as surro-
gates for the Adaptation Manager. Figure [2|illustrate these
components and how they interact.

Application
component

Lo

capsule

(4) bind
(5) cal MOP functions

Remote
Adaptor

(2) getComposition(co)
‘Compositional MOP

|GetComposition
@) instantistes” @

Adaptation co Meta
Manager Compositional

>
@%
Composite

component

(co)
capsule

Figure 2: Reconfiguration Model.

In the figure, an application component requires access
to the compositional meta-model of component co via the
Remote Adaptor (1), which is the local proxy for perform-
ing remote adaptation. The remote adaptor issues a request
to the Adaptation Manager installed in the co’s capsule to
access the co composition meta-object (2). The Adaptation
Manager requests the Local Factory (not shown in the fig-
ure) to create the co’s meta-object (3). It returns the refer-
ence to the ICompositional M OP interface to which the remote
adaptor can bind its required ICompositionalMOP interface
(4) and call methods to inspect and adapt the remote com-
ponent co (5).

The Adaptation Manager component, which is instanti-
ated when capsule is created, gives local support for adapta-
tion. It receives requests from remote capsules to retrieve
information about the components in that capsule. The
Adaptation Manager component implements the IGetCom-
positional whose IDL specification is shown in listing [2} This
component can be customised to include access control and
authentication to make adaptation safer.

Listing 2: IDL for the IGetCompositional interface.

// CORBA IDL
interface IGetCompositional {
typedef long IfacelD;
typedef long ComponentlD;
IfaceID getComposition (in ComponentID comp)
raises (InvalidComponent);
s

The Adaptation Data component is a passive component
that holds the set of adaptation rules of a particular composite
component.

5 Group of objects as a composite
component

In order to ease the control over a set of components, GOORB
provides support for groups in terms of configuration and
adaptation of groups. At the component-level, a group is a
distributed composite component, which includes members
and the explicit communication between these members. In
addition, components to control the functioning of the group
such as failure detectors or membership can also be part of
the composite (group) component.

Groups are created by group factories based on tem-
plates that describe the behaviour and structure of the group
(read [10] for more details). When a group is created, a de-
fault membership component with methods to join and leave
the group is created (IGroup interface). Requests to join and
leave a group are issued by an application component or a sys-
tem component in the IGroup interface. Then, these requests
are redirected to the Local Factory component located in

the member’s capsule which instantiates the necessary com-
ponents if these have not been instantiated yet.

Because changes in the structure of the composite compo-
nent are done via the compositional meta-model, joins and
leaves of components (members) to/from a group are repre-
sented by requests to add or remove components to/from a
composite component. At this point, the infrastructure pre-
sented in section [(Figure [2) is used.

Other changes in the group structure are also realised by
means of reflection. Special adaptation managers are instan-
tiated when the group and the members of the group are cre-
ated. Each group has a Group Adaptation Manager (GAM)
and each member of the group has a Member Adaptation
Manager (MAM). See figure |3 for details. The GAM is responsi-
ble for receiving adaptation requests to be performed in the
group (1). Then, the component that holds the adaptation
rules is contacted (2) to verify if the adaptation can take
place. Because groups can be heterogeneous, distinct adap-
tation can occur in each type of group member. Requests
to perform individual adaptation are also accepted (e.g., de-
stroy a particular member of the group). The GAM contacts
the membership component (3) to identify the members of
the group and so it can contact their MAM adapt interface in
order to send the particular adaptation requests (4). When a
MAM receives a request, it instantiates the meta-object associ-
ated to its member (5) and starts modifying the meta-object
through its ICompositional M OP interface presented in listing
Changes in the meta-object reflect in the actual component
(6) as explained earlier.

() | GROUP

GAM - Group Adaptation Manager
MAM - Member Adaptation Manager

Figure 3: The group adaptation architecture.

Requests to perform adaptation can be issue individually,
i.e., a single operation or in batch, i.e., a script which contains
a set of operations. Requests to the GAM should be issued with
the identification of the member or type of member where the
changes should take place. Next section presents a simple

example of adaptation.

6 Example

This example involves a group as the support for a sim-
ple audio and video conference application. The creation of
the group has specified the following member types: an au-
dio/video producer (AVProd), an audio producer (AProd), a
video producer (VProd), an audio/video consumer (AVCons),
an audio consumer (ACons) and a video consumer (VCons).
Member types are specified in a template that also includes
the minimum and maximum cardinality for each type of
member and details about how members communicate with
each other (the main configuration component) (more details
in [I0]). In terms of adaptation in this example, we suppose
there are no restrictions on the type of adaptation that can
take place. Figure [] shows a possible configuration of the
group described above with one AVProd, one AVCons and one
VCons. The components vs, as, vp and ap are the proxies to
the application and vb and ab are video and audio distributed
bindings, respectively.

Figure 4: AV Example.

The adaptation we propose here is the removal of all com-
ponents associated with the transmission of video, leaving
the group only with audio components. In order to do so,
the script shown in Figure [5| is sent to the group adaptation
manager (GAM):

The script identifies the operations (in the form of a single
operation or a script with one or more operations (see Fig-
ure @) to be performed in each member type or in a specific
member. As well, operations can be performed in the main
configuration (MC) component, which represents the explicit
communication between members of the group. The GAM ver-
ifies the identification of the members of the group affected
by the adaptation (AVProd, VProd, VCons, AVCons and MC)
and sends the associated operations to the adequate member
adaptation manager (MAM) E A number of operations (tagged
G in the script) are performed by the GAM itself. Because

INote that the MC also has a MAM.

AVProd::stop("vs"

VProd::stop("vs")

AVCons ::stop("vp")

VCons ::stop("vp")
MC::http://location/scripts/StopMC.scp
G::breakLocalBind (("vs", "out"), ("vb",
G::breakLocalBind (("vp", "inn"), ("vb",
MC::delIfaceExternal (("vb"), ("ifacel"))
MC::delIfaceExternal (("vb"), ("iface2"))
AVProd::dellfaceExternal (("vs"), ("out"))
VProd::delIfaceExternal (("vs"), ("out"))
AVCons ::dellfaceExternal (("vp"), ("inn"))
VCons :: dellfaceExternal (("vp"), ("inn"))
AVProd::delComponent ("vs")

VProd :: delComponent ("vs"

AVCons ::delComponent ("vp")

VCons :: delComponent ("vp")

MC:: delComponent ("vb")

"ifacel"))
"iface2"))

Figure 5: Group adaptation script.

StopMC.scp
Stop("vb")

Figure 6: Main configuration script.

a group is a composite component composed of a number
of member components and a MC component, the GAM has to
control the connections (bindings) between these components.
This is why the script explicitly removes external interfaces
of other composite components.

Start and stop operations can be issued by the MAM to freeze
a component if it implements the ISysCtrl interface. This
interface also provides methods for getting and setting the
components state. Operations that are present in the ICom-
positional MOP interface (e.g., delComponent) are passed to
the respective meta-object.

Individual operations can be performed by getting the
member identification with the membership component. The
following is an example of operation in a specific member:
VCons:member:6: :delComponent ("vc"). This operation is
invoked by using adaptMember() rather than adaptType() on
the GAM adapt interface.

7 Conclusion

The present paper has presented the experiments in applying
reflection for performing adaptation in a group context. Each
group is represented by a composite component and reflection
is used to access and manipulated this component’s internal
structure. The example presented in Section [6] has been im-
plemented using the OpenORB Python Prototype [I] along
with the extensions proposed for the support for groups. This
includes support for multiparty stream and operational bind-
ings and other components used for group communication
and management (e.g., membership, collation). Several ap-

plications can benefit from adaptation performed in a group.
In this paper, we presented the modification of the configu-
ration of a conference support. Other examples such as the
insertion of a filter or a monitor can also be realised.

References

[1] A. Andersen. The Open-ORB Python Prototype APL
NORUT IT Report IT302/2-99, NORUT IT, Oct. 1999.

[2] G. Blair, G. Coulson, P. Robin, and M. Papathomas. An
Architecture for Next Generation Middleware. In Proceed-
ings of IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware’98),
pages 191-206. Springer-Verlag, 1998.

[3] G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke,
F. Costa, H. Duran-Limon, T. Fitzpatrick, L. Johnston,

R. Moreira, N. Parlavantzas, and K. Saikoski. The
Design and Implementation of OpenORB v2. To ap-
pear in IEEE Distributed Systems Online, 2(6), 2001.

http://www.computer.org/dsonline/.

[4] F. Costa, G. Blair, and G. Coulson. Experiments with Re-
flective Middleware. In Proceedings of ECOOP’98 Workshop
on Reflective Object-Oriented Programming Systems, Brus-
sels, Belgium, 20, July 1998.

[5] F. M. Costa, H. A. Duran, N. Parlavantzas, K. B. Saikoski,
G. Blair, and G. Coulson. The Role of Reflective Middle-
ware in Supporting the Engineering of Dynamic Applications.
In W. Cazzola, R. J. Stroud, and F. Tisato, editors, Reflec-
tion and Software Engineering, Lecture Notes in Computer
Science 1826, pages 79-99. Springer-Verlag, Heidelberg, Ger-
many, June 2000.

[6] P. Felber, B. Garbinato, and R. Guerraoui. The Design of a
CORBA Group Communication Service. In Proceedings of the
15th Symposium on Reliable Distributed Systems, Niagara-on-
the-Lake (Canada), October 1996.

[7] S. Maffeis. Adding Group Communication Fault-Tolerance to
CORBA. In Proceedings of USENIX Conference on Object-
Oriented Technologies, Monterey, CA, June 1995.

[8] A. Montresor. The JGroup Reliable Distributed Object
Model. In Proceedings of the Second IFIP WG 6.1 Interna-
tional Working Conference on Distributed Applications and
Interoperable Systems (DAIS’99), Helsinki, Finland, June
1999.

[9] P. Narasimhan, E. Moser, and P. M. Melliar-Smith. Replica
consistency of CORBA objects in partitionable distributed
systems. Distributed Systems Engineering Journal, 4(3):139—
150, Sept. 1997.

K. B. Saikoski, G. Coulson, and G. Blair. Configurable and
Reconfigurable Group Services in a Component Based Mid-
dleware Environment. In Proceedings of the SRDS Depend-
able System Middleware and Group Communication Work-
shop (DSMGC), Niirnberg, Germany, 15, October 2000.

[10]

	Introduction
	The OpenORB basics
	GOORB's Compositional Meta-Model
	A Model for Distributed Reconfiguration
	Group of objects as a composite component
	Example
	Conclusion

